This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026998 #21 Aug 22 2025 00:15:43 %S A026998 1,1,1,1,4,1,1,4,8,1,1,4,11,13,1,1,4,11,26,19,1,1,4,11,29,54,26,1,1,4, %T A026998 11,29,73,101,34,1,1,4,11,29,76,171,174,43,1,1,4,11,29,76,196,370,281, %U A026998 53,1,1,4,11,29,76,199,487,743,431,64,1 %N A026998 Triangular array T read by rows: T(n, k) = t(n, 2k), t given by A027960, 0 <= k <= n, n >= 0. %C A026998 Right-edge columns are polynomials approximating Lucas(2n+1). %H A026998 G. C. Greubel, <a href="/A026998/b026998.txt">Table of n, a(n) for n = 0..1325</a> %F A026998 T(n, k) = Lucas(2*n+1) = A002878(n) for 2*k <= n, otherwise the (2*n-2*k)-th coefficient of the power series for (1+2*x)/( (1-x-x^2)*(1-x)^(2*k-n) ). %e A026998 .................................... 1; %e A026998 ................................. 1, 1; %e A026998 ............................. 1, 4, 1; %e A026998 ........................ 1, 4, 8, 1; %e A026998 ................... 1, 4, 11, 13, 1; %e A026998 .............. 1, 4, 11, 26, 19, 1; %e A026998 .......... 1, 4, 11, 29, 54, 26, 1; %e A026998 ...... 1, 4, 11, 29, 73, 101, 34, 1; %e A026998 .. 1, 4, 11, 29, 76, 171, 174, 43, 1; %e A026998 1, 4, 11, 29, 76, 196, 370, 281, 53, 1; %t A026998 f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}]; %t A026998 A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n]; %t A026998 A026998[n_, k_]:= A027960[n,2*k]; %t A026998 Table[A026998[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 09 2025 *) %o A026998 (Magma) %o A026998 function t(n, k) // t = A027960 %o A026998 if k le n then return Lucas(k+1); %o A026998 elif k gt 2*n then return 0; %o A026998 else return t(n-1, k-2) + t(n-1, k-1); %o A026998 end if; %o A026998 end function; %o A026998 A026998:= func< n,k | t(n, 2*k) >; %o A026998 [A026998(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 09 2025 %o A026998 (SageMath) %o A026998 @CachedFunction %o A026998 def t(n, k): # t = A027960 %o A026998 if (k>2*n): return 0 %o A026998 elif (k<n+1): return lucas_number2(k+1, 1, -1) %o A026998 else: return t(n-1, k-2) + t(n-1, k-1) %o A026998 def A026998(n,k): return t(n, 2*k) %o A026998 print(flatten([[A026998(n, k) for k in (0..n)] for n in (0..12)])) # _G. C. Greubel_, Jul 09 2025 %Y A026998 This is a bisection of the "Lucas array" A027960, see A027011 for the other bisection. %Y A026998 Row sums give A095121. %Y A026998 Signed row sums give A090132. %Y A026998 Diagonal sums give A027010. %Y A026998 Right-edge columns include A034856, A027966, A027968, A027970, A027972. %Y A026998 Cf. A000032. %K A026998 nonn,tabl,changed %O A026998 0,5 %A A026998 _Clark Kimberling_ %E A026998 Edited by _Ralf Stephan_, May 05 2005