This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026999 #8 Aug 21 2025 16:51:16 %S A026999 1,4,8,11,13,19,26,29,34,43,53,54,64,73,76,89,101,103,118,134,151,169, %T A026999 171,174,188,196,199,208,229,251,274,281,298,323,349,370,376,404,431, %U A026999 433,463,487,494,518,521,526,559,593,628,634,664,701,739,743,778,818,859,901,944,988,1033,1079,1126,1148 %N A026999 Uniquification of A026998. %H A026999 G. C. Greubel, <a href="/A026999/b026999.txt">Table of n, a(n) for n = 1..2500</a> %t A026999 f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}]; %t A026999 A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n]; %t A026999 A026999= Table[A027960[n,2*k], {n,0,225}, {k,0,n}]//Flatten//Union; %t A026999 Table[A026999[[n]], {n,120}] (* _G. C. Greubel_, Aug 21 2025 *) %o A026999 (SageMath) %o A026999 @CachedFunction %o A026999 def t(n, k): # t = A027960 %o A026999 if (k>2*n): return 0 %o A026999 elif (k<n+1): return lucas_number2(k+1, 1, -1) %o A026999 else: return t(n-1, k-2) + t(n-1, k-1) %o A026999 def A026998(n, k): return t(n, 2*k) %o A026999 A026999 = sorted(set( flatten([[A026998(n,k) for k in range(n+1)] for n in range(103)]) )) %o A026999 print([A026999[n] for n in range(100)]) # _G. C. Greubel_, Aug 21 2025 %Y A026999 Cf. A026998, A027960. %K A026999 nonn %O A026999 1,2 %A A026999 _Clark Kimberling_ %E A026999 More terms added by _G. C. Greubel_, Aug 21 2025