cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027004 a(n) = T(2*n+1,n+1), T given by A026998.

This page as a plain text file.
%I A027004 #19 Jul 23 2025 01:01:43
%S A027004 1,8,26,73,196,518,1361,3568,9346,24473,64076,167758,439201,1149848,
%T A027004 3010346,7881193,20633236,54018518,141422321,370248448,969323026,
%U A027004 2537720633,6643838876,17393795998,45537549121,119218851368,312119004986,817138163593,2139295485796
%N A027004 a(n) = T(2*n+1,n+1), T given by A026998.
%H A027004 Colin Barker, <a href="/A027004/b027004.txt">Table of n, a(n) for n = 0..1000</a>
%H A027004 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,1).
%F A027004 a(n) = Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3.
%F A027004 a(n) = A002878(n+1) - 3.
%F A027004 From _Colin Barker_, Feb 18 2016: (Start)
%F A027004 a(n) = 2^(-n)*((2-sqrt(5))*(3-sqrt(5))^n + (2+sqrt(5))*(3+sqrt(5))^n) - 3.
%F A027004 a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n > 2.
%F A027004 G.f.: (1+4*x-2*x^2) / ((1-x)*(1-3*x+x^2)). (End)
%F A027004 From _G. C. Greubel_, Jul 21 2025: (Start)
%F A027004 a(n) = Lucas(2*n+3) - 3.
%F A027004 E.g.f.: 2*exp(3*x/2)*(2*cosh(p*x) + p*sinh(p*x)) - 3*exp(x), where 2*p = sqrt(5). (End)
%t A027004 LucasL[2*Range[0,40] +3] -3 (* _G. C. Greubel_, Jul 21 2025 *)
%o A027004 (Magma) [Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3: n in [0..30]]; // _Vincenzo Librandi_, Apr 18 2011
%o A027004 (PARI) Vec((1+4*x-2*x^2)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Feb 18 2016
%o A027004 (SageMath)
%o A027004 def A027004(n): return lucas_number2(2*n+3,1,-1) -3 # _G. C. Greubel_, Jul 21 2025
%Y A027004 Cf. A000032, A002878, A026998.
%K A027004 nonn,easy
%O A027004 0,2
%A A027004 _Clark Kimberling_