This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027008 #10 Jul 24 2025 05:52:44 %S A027008 1,1,4,8,13,26,54,101,174,370,743,1397,2552,5353,10636,20120,38138, %T A027008 78753,155793,296248,573382,1173183,2316317,4423690,8673078,17641499, %U A027008 34801731,66705394,131894869,267203186,526966454,1013155981 %N A027008 a(n) = greatest number in row n of array T given by A026998. %H A027008 G. C. Greubel, <a href="/A027008/b027008.txt">Table of n, a(n) for n = 0..1000</a> %t A027008 f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}]; %t A027008 A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n]; %t A027008 b[n_]:= b[n]= Table[A027960[n,2*k], {k,0,n}]; %t A027008 A027008[n_]:= Max[b[n]]; %t A027008 Table[A027008[n], {n,0,50}] (* _G. C. Greubel_, Jul 24 2025 *) %o A027008 (SageMath) %o A027008 @CachedFunction %o A027008 def t(n, k): # t = A027960 %o A027008 if (k>2*n): return 0 %o A027008 elif (k<n+1): return lucas_number2(k+1, 1, -1) %o A027008 else: return t(n-1, k-2) + t(n-1, k-1) %o A027008 def A026998(n, k): return t(n, 2*k) %o A027008 def b(n): return flatten([A026998(n,k) for k in range(n+1)]) %o A027008 def A027008(n): return max(b(n)) %o A027008 print([A027008(n) for n in range(51)]) # _G. C. Greubel_, Jul 24 2025 %Y A027008 Cf. A026998. %K A027008 nonn %O A027008 0,3 %A A027008 _Clark Kimberling_ %E A027008 Offset changed by _G. C. Greubel_, Jul 24 2025