cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027011 Triangular array T read by rows: T(n,k) = t(n, 2k+1) for 0 <= k <= floor((2n-1)/2), t given by A027960, n >= 0.

This page as a plain text file.
%I A027011 #22 Oct 07 2017 02:35:40
%S A027011 3,3,4,3,7,5,3,7,15,6,3,7,18,28,7,3,7,18,44,47,8,3,7,18,47,98,73,9,3,
%T A027011 7,18,47,120,199,107,10,3,7,18,47,123,291,373,150,11,3,7,18,47,123,
%U A027011 319,661,654,203,12,3,7,18,47,123,322,806,1404,1085,267,13,3,7,18,47
%N A027011 Triangular array T read by rows: T(n,k) = t(n, 2k+1) for 0 <= k <= floor((2n-1)/2), t given by A027960, n >= 0.
%C A027011 Right-edge columns are polynomials approximating Lucas(2n).
%H A027011 Nathaniel Johnston, <a href="/A027011/b027011.txt">Table of n, a(n) for n = 1..10000</a>
%F A027011 T(n, k) = Lucas(2n) = A005248(n) for 2k+1 <= n, otherwise the (2n-2k+1)-th coefficient of the power series for (1+2x)/((1-x-x^2)(1-x)^(2k-n+1)).
%e A027011                                           3
%e A027011                                      3,   4
%e A027011                                 3,   7,   5
%e A027011                            3,   7,  15,   6
%e A027011                       3,   7,  18,  28,   7
%e A027011                  3,   7,  18,  44,  47,   8
%e A027011             3,   7,  18,  47,  98,  73,   9
%e A027011        3,   7,  18,  47, 120, 199, 107,  10
%e A027011   3,   7,  18,  47, 123, 291, 373, 150,  11
%p A027011 t:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return t(n-1,k-2) + t(n-1,k-1):fi:end:
%p A027011 T:=proc(n,k)return t(n,2*k+1):end:
%p A027011 for n from 0 to 8 do for k from 0 to floor((2*n-1)/2) do print(T(n,k));od:od: # _Nathaniel Johnston_, Apr 18 2011
%t A027011 t[n_, k_] := t[n, k] = If[k == 0 || k == 2*n, 1, If[k == 1, 3, t[n-1, k-2] + t[n-1, k-1]]]; T[n_, k_] := t[n, 2*k+1]; Table[T[n, k], {n, 1, 12}, {k, 0, (2*n-1)/2}] // Flatten (* _Jean-François Alcover_, Nov 18 2013, after _Nathaniel Johnston_ *)
%Y A027011 This is a bisection of the "Lucas array " A027960, see A026998 for the other bisection.
%Y A027011 Right-edge columns include A027965, A027967, A027969, A027971.
%Y A027011 An earlier version of this entry had (unjustifiably) each row starting with 1.
%K A027011 nonn,easy,tabl
%O A027011 1,1
%A A027011 _Clark Kimberling_
%E A027011 Edited by _Ralf Stephan_, May 05 2005