cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027027 a(n) = T(n, 2n-3), T given by A027023.

This page as a plain text file.
%I A027027 #15 Mar 08 2023 04:06:11
%S A027027 1,3,9,27,77,215,597,1655,4593,12775,35629,99651,279501,786071,
%T A027027 2216437,6264663,17746897,50380895,143307269,408388819,1165819757,
%U A027027 3333448075,9545909641,27375525727,78612676241,226034151539,650692800633
%N A027027 a(n) = T(n, 2n-3), T given by A027023.
%H A027027 G. C. Greubel, <a href="/A027027/b027027.txt">Table of n, a(n) for n = 2..750</a>
%F A027027 Conjecture: D-finite with recurrence (n+1)*a(n) +(-8*n-1)*a(n-1) +(19*n-14)*a(n-2) +2*(-3*n-1)*a(n-3) +(-21*n+89)*a(n-4) +(8*n-45)*a(n-5) +(n-4)*a(n-6) +6*(n-4)*a(n-7)=0. - _R. J. Mathar_, Jun 24 2020
%F A027027 a(n) ~ 3^(n + 7/2) / (4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2023
%p A027027 T:= proc(n, k) option remember;
%p A027027       if k<3 or k=2*n then 1
%p A027027     else add(T(n-1, k-j), j=1..3)
%p A027027       fi
%p A027027     end:
%p A027027 seq(T(n, 2*n-3), n=2..30); # _G. C. Greubel_, Nov 04 2019
%t A027027 T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-3], {n, 2, 30}] (* _G. C. Greubel_, Nov 04 2019 *)
%o A027027 (Sage)
%o A027027 @CachedFunction
%o A027027 def T(n, k):
%o A027027     if (k<3 or k==2*n): return 1
%o A027027     else: return sum(T(n-1, k-j) for j in (1..3))
%o A027027 [T(n, 2*n-3) for n in (2..30)] # _G. C. Greubel_, Nov 04 2019
%Y A027027 Cf. A027023.
%K A027027 nonn
%O A027027 2,2
%A A027027 _Clark Kimberling_