This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027027 #15 Mar 08 2023 04:06:11 %S A027027 1,3,9,27,77,215,597,1655,4593,12775,35629,99651,279501,786071, %T A027027 2216437,6264663,17746897,50380895,143307269,408388819,1165819757, %U A027027 3333448075,9545909641,27375525727,78612676241,226034151539,650692800633 %N A027027 a(n) = T(n, 2n-3), T given by A027023. %H A027027 G. C. Greubel, <a href="/A027027/b027027.txt">Table of n, a(n) for n = 2..750</a> %F A027027 Conjecture: D-finite with recurrence (n+1)*a(n) +(-8*n-1)*a(n-1) +(19*n-14)*a(n-2) +2*(-3*n-1)*a(n-3) +(-21*n+89)*a(n-4) +(8*n-45)*a(n-5) +(n-4)*a(n-6) +6*(n-4)*a(n-7)=0. - _R. J. Mathar_, Jun 24 2020 %F A027027 a(n) ~ 3^(n + 7/2) / (4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2023 %p A027027 T:= proc(n, k) option remember; %p A027027 if k<3 or k=2*n then 1 %p A027027 else add(T(n-1, k-j), j=1..3) %p A027027 fi %p A027027 end: %p A027027 seq(T(n, 2*n-3), n=2..30); # _G. C. Greubel_, Nov 04 2019 %t A027027 T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-3], {n, 2, 30}] (* _G. C. Greubel_, Nov 04 2019 *) %o A027027 (Sage) %o A027027 @CachedFunction %o A027027 def T(n, k): %o A027027 if (k<3 or k==2*n): return 1 %o A027027 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027027 [T(n, 2*n-3) for n in (2..30)] # _G. C. Greubel_, Nov 04 2019 %Y A027027 Cf. A027023. %K A027027 nonn %O A027027 2,2 %A A027027 _Clark Kimberling_