This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027032 #9 Nov 05 2019 07:23:38 %S A027032 1,1,5,17,57,193,649,2161,7113,23137,74417,236913,747401,2339137, %T A027032 7270189,22460801,69031105,211206529,643684485,1955082321,5920720729, %U A027032 17884040961,53898818389,162120056257,486791503521,1459448379329 %N A027032 a(n) = T(n,2n-8), T given by A027023. %H A027032 G. C. Greubel, <a href="/A027032/b027032.txt">Table of n, a(n) for n = 4..750</a> %p A027032 T:= proc(n, k) option remember; %p A027032 if k<3 or k=2*n then 1 %p A027032 else add(T(n-1, k-j), j=1..3) %p A027032 fi %p A027032 end: %p A027032 seq(T(n,2*n-8), n=4..30); # _G. C. Greubel_, Nov 05 2019 %t A027032 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-8], {n,4,30}] (* _G. C. Greubel_, Nov 05 2019 *) %o A027032 (Sage) %o A027032 @CachedFunction %o A027032 def T(n, k): %o A027032 if (k<3 or k==2*n): return 1 %o A027032 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027032 [T(n, 2*n-8) for n in (4..30)] # _G. C. Greubel_, Nov 05 2019 %K A027032 nonn %O A027032 4,3 %A A027032 _Clark Kimberling_