This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027033 #7 Nov 05 2019 12:22:48 %S A027033 1,3,9,31,105,355,1197,4011,13329,43883,143105,462391,1481229,4707743, %T A027033 14856441,46585671,145253757,450624055,1391743825,4281348119, %U A027033 13124142489,40105164499,122213161617,371496978671,1126750503081 %N A027033 a(n) = T(n,2n-9), T given by A027023. %H A027033 G. C. Greubel, <a href="/A027033/b027033.txt">Table of n, a(n) for n = 5..750</a> %p A027033 T:= proc(n, k) option remember; %p A027033 if k<3 or k=2*n then 1 %p A027033 else add(T(n-1, k-j), j=1..3) %p A027033 fi %p A027033 end: %p A027033 seq(T(n,2*n-9), n=5..30); # _G. C. Greubel_, Nov 05 2019 %t A027033 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-9], {n,5,30}] (* _G. C. Greubel_, Nov 05 2019 *) %o A027033 (Sage) %o A027033 @CachedFunction %o A027033 def T(n, k): %o A027033 if (k<3 or k==2*n): return 1 %o A027033 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027033 [T(n, 2*n-9) for n in (5..30)] # _G. C. Greubel_, Nov 05 2019 %K A027033 nonn %O A027033 5,2 %A A027033 _Clark Kimberling_