This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027047 #13 Nov 05 2019 01:01:28 %S A027047 2,8,50,336,2418,18088,138850,1086016,8617122,69159896,560290322, %T A027047 4574820624,37603654098,310873702392,2582964183874,21556333188288, %U A027047 180609299685954,1518572497996568,12808849866774002,108351496132761104,918964407713589618,7812768025080427672 %N A027047 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A027023. %H A027047 G. C. Greubel, <a href="/A027047/b027047.txt">Table of n, a(n) for n = 1..1000</a> %p A027047 T:= proc(n, k) option remember; %p A027047 if k<3 or k=2*n then 1 %p A027047 else add(T(n-1, k-j), j=1..3) %p A027047 fi %p A027047 end: %p A027047 seq(add(T(n,k)*T(n,k+1), k=0..2*n-1), n=1..30); # _G. C. Greubel_, Nov 04 2019 %t A027047 T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k]*T[n,k+1], {k,0,2*n-1}], {n,1,30}] (* _G. C. Greubel_, Nov 04 2019 *) %o A027047 (Sage) %o A027047 @CachedFunction %o A027047 def T(n, k): %o A027047 if (k<3 or k==2*n): return 1 %o A027047 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027047 [sum(T(n,k)*T(n,k+1) for k in (0..2*n-1)) for n in (1..30)] # _G. C. Greubel_, Nov 04 2019 %K A027047 nonn %O A027047 1,1 %A A027047 _Clark Kimberling_ %E A027047 More terms from _Sean A. Irvine_, Oct 22 2019