This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027058 #16 Mar 08 2023 04:17:04 %S A027058 1,1,3,9,23,59,153,401,1063,2847,7693,20947,57413,158265,438467, %T A027058 1220145,3408759,9556815,26878861,75815839,214411865,607827693, %U A027058 1726911631,4916352891,14022750725,40066540277,114666463855,328662240617 %N A027058 a(n) = A027052(n, 2n-2). %H A027058 G. C. Greubel, <a href="/A027058/b027058.txt">Table of n, a(n) for n = 1..750</a> %F A027058 Conjecture: D-finite with recurrence n*a(n) +(-7*n+4)*a(n-1) +(13*n-10)*a(n-2) +(n-34)*a(n-3) +(-13*n+84)*a(n-4) +(3*n-32)*a(n-5) +(-n+6)*a(n-6) +3*(n-6)*a(n-7)=0. - _R. J. Mathar_, Jun 15 2020 %F A027058 a(n) ~ 3^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 08 2023 %p A027058 T:= proc(n, k) option remember; %p A027058 if k<0 or k>2*n then 0 %p A027058 elif k=0 or k=2 or k=2*n then 1 %p A027058 elif k=1 then 0 %p A027058 else add(T(n-1, k-j), j=1..3) %p A027058 fi %p A027058 end: %p A027058 seq( T(n,2*n-2), n=1..30); # _G. C. Greubel_, Nov 06 2019 %t A027058 T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-2], {n,30}] (* _G. C. Greubel_, Nov 06 2019 *) %o A027058 (Sage) %o A027058 @CachedFunction %o A027058 def T(n, k): %o A027058 if (k<0 or k>2*n): return 0 %o A027058 elif (k==0 or k==2 or k==2*n): return 1 %o A027058 elif (k==1): return 0 %o A027058 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027058 [T(n,2*n-2) for n in (1..30)] # _G. C. Greubel_, Nov 06 2019 %K A027058 nonn %O A027058 1,3 %A A027058 _Clark Kimberling_ %E A027058 Offset changed to 1 and a(1)=1 prepended to sequence by _G. C. Greubel_, Nov 06 2019