This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027064 #11 Nov 07 2019 08:28:23 %S A027064 1,1,3,11,37,125,421,1405,4637,15125,48777,155665,492157,1543269, %T A027064 4804663,14865495,45745953,140118817,427445507,1299383403,3937901525, %U A027064 11902380845,35891429675,108009437323,324455779889,973119941425 %N A027064 a(n) = A027052(n, 2n-8). %H A027064 G. C. Greubel, <a href="/A027064/b027064.txt">Table of n, a(n) for n = 4..750</a> %p A027064 T:= proc(n, k) option remember; %p A027064 if k<0 or k>2*n then 0 %p A027064 elif k=0 or k=2 or k=2*n then 1 %p A027064 elif k=1 then 0 %p A027064 else add(T(n-1, k-j), j=1..3) %p A027064 fi %p A027064 end: %p A027064 seq( T(n,2*n-8), n=4..30); # _G. C. Greubel_, Nov 06 2019 %t A027064 T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-8], {n,4,30}] (* _G. C. Greubel_, Nov 06 2019 *) %o A027064 (Sage) %o A027064 @CachedFunction %o A027064 def T(n, k): %o A027064 if (k<0 or k>2*n): return 0 %o A027064 elif (k==0 or k==2 or k==2*n): return 1 %o A027064 elif (k==1): return 0 %o A027064 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027064 [T(n,2*n-8) for n in (4..30)] # _G. C. Greubel_, Nov 06 2019 %K A027064 nonn %O A027064 4,3 %A A027064 _Clark Kimberling_