This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027069 #12 Nov 07 2019 08:27:52 %S A027069 1,1,1,2,2,4,5,7,11,14,22,32,43,67,97,134,206,298,419,637,923,1312, %T A027069 1978,2872,4111,6161,8961,12888,19232,28010,40423,60129,87665,126840, %U A027069 188216,274634,398151,589689,861001,1250210,1848840,2700900,3926839,5799949,8476579 %N A027069 a(n) = diagonal sum of left-justified array T given by A027052. %H A027069 G. C. Greubel, <a href="/A027069/b027069.txt">Table of n, a(n) for n = 0..1000</a> %F A027069 a(n) = Sum_{k=0..n} A027052(n - k, k). - _Sean A. Irvine_, Oct 22 2019 %p A027069 T:= proc(n, k) option remember; %p A027069 if k<0 or k>2*n then 0 %p A027069 elif k=0 or k=2 or k=2*n then 1 %p A027069 elif k=1 then 0 %p A027069 else add(T(n-1, k-j), j=1..3) %p A027069 fi %p A027069 end: %p A027069 seq( add(T(n-k,k), k=0..n), n=0..50); # _G. C. Greubel_, Nov 06 2019 %t A027069 T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j,3} ]]]]; Table[Sum[T[n-k,k], {k,0,n}], {n, 0, 50}] (* _G. C. Greubel_, Nov 06 2019 *) %o A027069 (Sage) %o A027069 @CachedFunction %o A027069 def T(n, k): %o A027069 if (k<0 or k>2*n): return 0 %o A027069 elif (k==0 or k==2 or k==2*n): return 1 %o A027069 elif (k==1): return 0 %o A027069 else: return sum(T(n-1, k-j) for j in (1..3)) %o A027069 [sum(T(n-k,k) for k in (0..n)) for n in (0..50)] # _G. C. Greubel_, Nov 06 2019 %K A027069 nonn %O A027069 0,4 %A A027069 _Clark Kimberling_ %E A027069 More terms from _Sean A. Irvine_, Oct 22 2019