This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027170 #30 Apr 18 2020 09:21:46 %S A027170 1,3,3,5,10,5,7,19,19,7,9,30,42,30,9,11,43,76,76,43,11,13,58,123,156, %T A027170 123,58,13,15,75,185,283,283,185,75,15,17,94,264,472,570,472,264,94, %U A027170 17,19,115,362,740,1046,1046,740,362,115,19,21,138,481,1106,1790,2096,1790,1106,481,138,21 %N A027170 Triangular array T read by rows (4-diamondization of Pascal's triangle). Step 1: t(n,k) = C(n+2,k+1) + C(n+1,k) + C(n+1,k+1) + C(n,k). Step 2: T(n,k) = t(n,k) - t(0,0) + 1. Domain: 0 <= k <= n, n >= 0. %H A027170 Indranil Ghosh, <a href="/A027170/b027170.txt">Rows of n = 0..125 of triangle, flattened</a> %e A027170 Triangle starts: %e A027170 1; %e A027170 3, 3; %e A027170 5, 10, 5; %e A027170 7, 19, 19, 7; %e A027170 9, 30, 42, 30, 9; %e A027170 11, 43, 76, 76, 43, 11; %e A027170 ... %t A027170 t[n_, k_]:= Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n ,k]; T[n_, k_] := t[n, k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 10},{k, 0, n}]] (* _Indranil Ghosh_, Mar 13 2017 *) %o A027170 (PARI) alias(C, binomial); %o A027170 t(n,k) = C(n+2,k+1)+C(n+1,k)+C(n+1,k+1)+C(n,k); %o A027170 T(n,k) = t(n,k)-t(0,0)+1; %o A027170 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print()); %o A027170 \\ _Michel Marcus_, Mar 13 2017 %Y A027170 Cf. A007318, A026907. %K A027170 nonn,tabl %O A027170 0,2 %A A027170 _Clark Kimberling_