This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027199 #20 May 15 2023 11:14:05 %S A027199 1,1,1,2,1,1,2,1,1,1,4,1,1,1,1,5,2,1,1,1,1,8,2,1,1,1,1,1,10,3,1,1,1,1, %T A027199 1,1,16,4,2,1,1,1,1,1,1,20,6,2,1,1,1,1,1,1,1,29,7,3,1,1,1,1,1,1,1,1, %U A027199 37,10,4,2,1,1,1,1,1,1,1,1,52,12,5,2,1,1,1,1,1,1,1,1,1,66,17,6,3,1,1,1,1,1,1,1,1,1,1 %N A027199 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each >=k. %F A027199 T(n, k) = Sum{O(n, i)}, k<=i<=n, O given by A027185. %F A027199 T(n,k) + A027200(n,k) = A026807(n,k). - _R. J. Mathar_, Oct 18 2019 %F A027199 G.f. of column k: x^k * Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i+1} (1-x^j). - _Seiichi Manyama_, May 15 2023 %e A027199 Triangle begins: %e A027199 1; %e A027199 1, 1; %e A027199 2, 1, 1; %e A027199 2, 1, 1, 1; %e A027199 4, 1, 1, 1, 1; %e A027199 5, 2, 1, 1, 1, 1; %e A027199 8, 2, 1, 1, 1, 1, 1; %e A027199 10, 3, 1, 1, 1, 1, 1, 1; %e A027199 16, 4, 2, 1, 1, 1, 1, 1, 1; %e A027199 20, 6, 2, 1, 1, 1, 1, 1, 1, 1; %e A027199 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1; %e A027199 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1; %e A027199 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1; %o A027199 (PARI) T(n, k) = polcoef(x^k*sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i+1, 1-x^j+x*O(x^n))), n); \\ _Seiichi Manyama_, May 15 2023 %Y A027199 Cf. A027185, A027193 (first column), A027194, A027195, A027196, A027197, A027198. %K A027199 nonn,tabl %O A027199 1,4 %A A027199 _Clark Kimberling_ %E A027199 More terms from _Seiichi Manyama_, May 15 2023