This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027215 #9 Jul 20 2019 08:09:51 %S A027215 1,2,6,20,78,282,1187,4428,19175,72820,319493,1227712,5424359, %T A027215 21018514,93252862,363563668,1617342486,6334904252,28232695584, %U A027215 110982722888,495257577162 %N A027215 Self-convolution of row n of array T given by A026736. %H A027215 G. C. Greubel, <a href="/A027215/b027215.txt">Table of n, a(n) for n = 0..1000</a> %t A027215 T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; %t A027215 Table[Sum[T[n, k]*T[n, n-k], {k,0,n}], {n,0,40}] (* _G. C. Greubel_, Jul 19 2019 *) %o A027215 (PARI) T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); %o A027215 vector(21, n, n--; sum(k=0, n, T(n, k)*T(n,n-k)) ) \\ _G. C. Greubel_, Jul 19 2019 %o A027215 (Sage) %o A027215 @CachedFunction %o A027215 def T(n, k): %o A027215 if (k==0 or k==n): return 1 %o A027215 if (k==n-1): return n %o A027215 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) %o A027215 else: return T(n-1, k-1) + T(n-1, k) %o A027215 [sum(T(n,k)*T(n,n-k) for k in (0..n)) for n in (0..40)] # _G. C. Greubel_, Jul 19 2019 %o A027215 (GAP) %o A027215 T:= function(n, k) %o A027215 if k=0 or k=n then return 1; %o A027215 elif k=n-1 then return n; %o A027215 elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); %o A027215 else return T(n-1, k-1) + T(n-1, k); %o A027215 fi; %o A027215 end; %o A027215 List([0..20], n-> Sum([0..n], k-> T(n, k)*T(n,n-k) )); # _G. C. Greubel_, Jul 19 2019 %Y A027215 Cf. A026736. %K A027215 nonn %O A027215 0,2 %A A027215 _Clark Kimberling_