This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027216 #19 Sep 29 2024 17:00:19 %S A027216 1,4,15,63,237,1034,3945,17577,67640,304902,1179415,5352038,20771331, %T A027216 94628132,368083879,1680820301,6548692260,29946087674,116816782997, %U A027216 534628747310 %N A027216 a(n) = Sum_{k=0..n-1} T(n,k)*T(n,k+1), T given by A026736. %H A027216 G. C. Greubel, <a href="/A027216/b027216.txt">Table of n, a(n) for n = 1..1000</a> %F A027216 a(n) ~ (1/2 - (-1)^n/10) * phi^(3*n - 5/2 + (-1)^n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jul 19 2019 %t A027216 T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+1], {k, 0, n-1}], {n, 1, 30}] (* _G. C. Greubel_, Jul 19 2019 *) %o A027216 (PARI) T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); %o A027216 vector(20, n, sum(k=0, n-1, T(n, k)*T(n,k+1)) ) \\ _G. C. Greubel_, Jul 19 2019 %o A027216 (Sage) %o A027216 @CachedFunction %o A027216 def T(n, k): %o A027216 if (k==0 or k==n): return 1 %o A027216 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) %o A027216 else: return T(n-1, k-1) + T(n-1, k) %o A027216 [sum(T(n,k)*T(n,k+1) for k in (0..n-1)) for n in (1..30)] # _G. C. Greubel_, Jul 19 2019 %o A027216 (GAP) %o A027216 T:= function(n, k) %o A027216 if k=0 or k=n then return 1; %o A027216 elif k=n-1 then return n; %o A027216 elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); %o A027216 else return T(n-1, k-1) + T(n-1, k); %o A027216 fi; %o A027216 end; %o A027216 List([1..20], n-> Sum([0..n-1], k-> T(n, k)*T(n,k+1) )); # _G. C. Greubel_, Jul 19 2019 %Y A027216 Cf. A026736. %K A027216 nonn %O A027216 1,2 %A A027216 _Clark Kimberling_