This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027217 #12 Sep 29 2024 17:00:35 %S A027217 1,6,32,136,640,2593,11860,47532,215531,861334,3893621,15549166, %T A027217 70199065,280316029,1264697307,5050617474,22776900816,90972831448, %U A027217 410117333080 %N A027217 a(n) = Sum_{k=0..n-2} T(n,k)*T(n,k+2), T given by A026736. %H A027217 G. C. Greubel, <a href="/A027217/b027217.txt">Table of n, a(n) for n = 2..1000</a> %t A027217 T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+2], {k, 0, n-2}], {n, 2, 30}] (* _G. C. Greubel_, Jul 19 2019 *) %o A027217 (PARI) T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); %o A027217 vector(20, n, n++; sum(k=0, n-2, T(n, k)*T(n,k+2)) ) \\ _G. C. Greubel_, Jul 19 2019 %o A027217 (Sage) %o A027217 @CachedFunction %o A027217 def T(n, k): %o A027217 if (k==0 or k==n): return 1 %o A027217 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) %o A027217 else: return T(n-1, k-1) + T(n-1, k) %o A027217 [sum(T(n,k)*T(n,k+2) for k in (0..n-2)) for n in (2..30)] # _G. C. Greubel_, Jul 19 2019 %o A027217 (GAP) %o A027217 T:= function(n, k) %o A027217 if k=0 or k=n then return 1; %o A027217 elif k=n-1 then return n; %o A027217 elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); %o A027217 else return T(n-1, k-1) + T(n-1, k); %o A027217 fi; %o A027217 end; %o A027217 List([2..20], n-> Sum([0..n-2], k-> T(n, k)*T(n,k+2) )); # _G. C. Greubel_, Jul 19 2019 %Y A027217 Cf. A026736. %K A027217 nonn %O A027217 2,2 %A A027217 _Clark Kimberling_