This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027218 #16 Sep 29 2024 17:00:47 %S A027218 1,9,51,279,1277,6235,26789,125370,525082,2409886,9969722,45289767, %T A027218 186105280,840402559,3439358196,15472942142,63155131233,283400162019 %N A027218 a(n) = Sum_{k=0..n-3} T(n,k)*T(n,k+3), T given by A026736. %H A027218 G. C. Greubel, <a href="/A027218/b027218.txt">Table of n, a(n) for n = 3..1000</a> %t A027218 T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+3], {k, 0, n-3}], {n, 3, 30}] (* _G. C. Greubel_, Jul 19 2019 *) %o A027218 (PARI) T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); %o A027218 for(n=3,20, print1(sum(k=0, n-3, T(n, k)*T(n,k+3)), ", ")) \\ _G. C. Greubel_, Jul 19 2019 %o A027218 (Sage) %o A027218 @CachedFunction %o A027218 def T(n, k): %o A027218 if (k==0 or k==n): return 1 %o A027218 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) %o A027218 else: return T(n-1, k-1) + T(n-1, k) %o A027218 [sum(T(n,k)*T(n,k+3) for k in (0..n-3)) for n in (3..30)] # _G. C. Greubel_, Jul 19 2019 %o A027218 (GAP) %o A027218 T:= function(n, k) %o A027218 if k=0 or k=n then return 1; %o A027218 elif k=n-1 then return n; %o A027218 elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); %o A027218 else return T(n-1, k-1) + T(n-1, k); %o A027218 fi; %o A027218 end; %o A027218 List([3..20], n-> Sum([0..n-3], k-> T(n, k)*T(n,k+3) )); # _G. C. Greubel_, Jul 19 2019 %Y A027218 Cf. A026736. %K A027218 nonn %O A027218 3,2 %A A027218 _Clark Kimberling_