cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027276 a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).

This page as a plain text file.
%I A027276 #18 Oct 21 2022 22:11:20
%S A027276 1,6,27,72,270,648,2268,5184,17496,38880,128304,279936,909792,1959552,
%T A027276 6298560,13436928,42830208,90699264,287214336,604661760,1904684544,
%U A027276 3990767616,12516498432,26121388032,81629337600,169789022208
%N A027276 a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
%H A027276 G. C. Greubel, <a href="/A027276/b027276.txt">Table of n, a(n) for n = 0..1000</a>
%H A027276 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,12,0,-36).
%F A027276 a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
%F A027276 G.f.: (1 +6*x +15*x^2 -18*x^3)/(1-6*x^2)^2.
%F A027276 a(n) = -(1/2)*[n=0] + (1/4)*6^(n/2)*(n + 1)*(3*(1 + (-1)^n) + sqrt(6)*(1 - (-1)^n)). - _G. C. Greubel_, Dec 18 2021
%t A027276 Table[-(1/2)*Boole[n==0] + (1/4)*6^(n/2)*(n+1)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)), {n, 0, 40}] (* _G. C. Greubel_, Dec 18 2021 *)
%o A027276 (Magma) I:= [6,27,72,270]; [1] cat [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // _G. C. Greubel_, Dec 18 2021
%o A027276 (Sage)
%o A027276 @CachedFunction
%o A027276 def T(n,k): # T = A026552
%o A027276     if (k==0 or k==2*n): return 1
%o A027276     elif (k==1 or k==2*n-1): return (n+2)//2
%o A027276     elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
%o A027276     else: return T(n-1, k) + T(n-1, k-2)
%o A027276 @CachedFunction
%o A027276 def a(n): return sum( (k+1)*T(n,k) for k in (0..2*n) )
%o A027276 [a(n) for n in (0..40)] # _G. C. Greubel_, Dec 18 2021
%o A027276 (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;27;72])[1,1] \\ _Charles R Greathouse IV_, Oct 21 2022
%Y A027276 Cf. A026552, A026553, A026554, A026555, A026556, A026557, A026558, A026559, A026560, A026563, A026564, A026566, A026567, A027272, A027273, A027274, A027275.
%K A027276 nonn,easy
%O A027276 0,2
%A A027276 _Clark Kimberling_