A027293 Triangular array given by rows: P(n,k) is the number of partitions of n that contain k as a part.
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 7, 5, 3, 2, 1, 1, 11, 7, 5, 3, 2, 1, 1, 15, 11, 7, 5, 3, 2, 1, 1, 22, 15, 11, 7, 5, 3, 2, 1, 1, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 77
Offset: 1
Examples
The triangle P begins (with offsets 0 it is Pa): n \ k 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 1 1 3: 2 1 1 4: 3 2 1 1 5: 5 3 2 1 1 6: 7 5 3 2 1 1 7: 11 7 5 3 2 1 1 8: 15 11 7 5 3 2 1 1 9: 22 15 11 7 5 3 2 1 1 10: 30 22 15 11 7 5 3 2 1 1 ... reformatted by _Wolfdieter Lang_, Apr 14 2021
Links
- Robert Price, Table of n, a(n) for n = 1..5050
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{t = Flatten[Union /@ IntegerPartitions@n]}, Table[Count[t, i], {i, n}]]; Array[f, 13] // Flatten t[n_, k_] := PartitionsP[n-k]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
Formula
P(n,k) = p(n-k) = A000041(n-k), n>=1, k>=1. - Omar E. Pol, Feb 15 2013
a(n) = A000041(m), where m = (t*t + 3*t + 4)/2 - n, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012
From Wolfdieter Lang, Apr 14 2021: (Start)
Pa(n, m) = P(n+1, m+1) = A000041(n-m), for n >= m >= 0, and 0 otherwise, gives the Riordan matrix Pa = (P(x), x), of Toeplitz type, with the o.g.f. P(x) of A000041. The o.g.f. of triangle Pa (the o.g.f. of the row polynomials RPa(n, x) = Sum_{m=0..n} Pa(n, m)*x^m) is G(z, x) = P(z)/(1 - x*z).
The (infinite) matrix Pa has the 'L-eigen-sequence' B = A067687, that is, Pa*vec(B) = L*vec(B), with the matrix L with elements L(i, j) = delta(i, j-1) (Kronecker's delta symbol). For such L-eigen-sequences see the Bernstein and Sloane links under A155002.
Thanks to Gary W. Adamson for motivating me to look at such matrices and sequences. (End)
Comments