cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).

This page as a plain text file.
%I A027307 #131 Feb 23 2025 11:25:23
%S A027307 1,2,10,66,498,4066,34970,312066,2862562,26824386,255680170,
%T A027307 2471150402,24161357010,238552980386,2375085745978,23818652359682,
%U A027307 240382621607874,2439561132029314,24881261270812490,254892699352950850
%N A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).
%C A027307 These are the 3-Schroeder numbers according to Yang-Jiang (2021). - _N. J. A. Sloane_, Mar 28 2021
%C A027307 Equals row sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - _Paul D. Hanna_, Mar 30 2005
%C A027307 a(n) counts ordered complete ternary trees with 2*n + 1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See [Drake, Example 1.6.9]. An example is given below. - _Peter Bala_, Sep 29 2011
%C A027307 a(n) for n >= 1 is the number of compact coalescent histories for matching lodgepole gene trees and species trees with n cherries and 2n+1 leaves. - _Noah A Rosenberg_, Jun 21 2022
%C A027307 a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n} intersect S_{2*n+1}”, where n union and n intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n+1} are sets. - _Alexander Burstein_, Nov 22 2023
%D A027307 Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
%H A027307 Vincenzo Librandi, <a href="/A027307/b027307.txt">Table of n, a(n) for n = 0..200</a>
%H A027307 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2112.11595">Pseudo-involutions in the Riordan group</a>, arXiv:2112.11595 [math.CO], 2021.
%H A027307 Gi-Sang Cheon, S.-T. Jin and L. W. Shapiro, <a href="http://dx.doi.org/10.1016/j.laa.2015.03.015">A combinatorial equivalence relation for formal power series</a>, Linear Algebra and its Applications, Available online 30 March 2015.
%H A027307 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658</a>, American Math. Monthly, 107, 2000, 368-370.
%H A027307 F. Disanto and N. A. Rosenberg, <a href="https://doi.org/10.1007/s00285-018-1271-5">Enumeration of compact coalescent histories for matching gene trees and species trees</a>, J. Math. Biol 78 (2019), 155-188.
%H A027307 B. Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9)</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
%H A027307 Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%H A027307 Zhen-ji Tian and Shu-ping Dou, <a href="https://journal.lut.edu.cn/EN/abstract/abstract771.shtml">Enumerations of 3 di-sk trees</a>, J. Lanzhou Univ. Tech. (2024) Vol. 50, No. 6, 144-149. See p. 146.
%H A027307 J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, <a href="https://ir.cwi.nl/pub/21313">Context-free coalgebras</a>, 2013.
%H A027307 Jun Yan, <a href="https://arxiv.org/abs/2501.01152">Lattice paths enumerations weighted by ascent lengths</a>, arXiv:2501.01152 [math.CO], 2025. See p. 11.
%H A027307 Sheng-liang Yang and Mei-yang Jiang, <a href="https://journal.lut.edu.cn/EN/abstract/abstract528.shtml">Pattern avoiding problems on the hybrid d-trees</a>, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
%H A027307 Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, <a href="https://arxiv.org/abs/1706.03357">Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing</a>, arXiv:1706.03357 [cs.CL], 2017.
%H A027307 Jian Zhou, <a href="https://arxiv.org/abs/2108.10514">On Some Mathematics Related to the Interpolating Statistics</a>, arXiv:2108.10514 [math-ph], 2021.
%F A027307 G.f.: (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.
%F A027307 a(n) = (1/n) * Sum_{i=0..n-1} 2^(i+1)*binomial(2*n, i)*binomial(n, i+1), n>0.
%F A027307 a(n) = 2*A034015(n-1), n>0.
%F A027307 a(n) = Sum_{k=0..n} C(2*n+k, n+2*k)*C(n+2*k, k)/(n+k+1). - _Paul D. Hanna_, Mar 30 2005
%F A027307 Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=x(x-y)+(x+y)y^2 . - _Michael Somos_, May 23 2005
%F A027307 Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A085403(k)x^k).
%F A027307 G.f. A(x) satisfies A(x)=A006318(x*A(x)). - _Vladimir Kruchinin_, Apr 18 2011
%F A027307 The function B(x) = x*A(x^2) satisfies B(x) = x+x*B(x)^2+B(x)^3 and hence B(x) = compositional inverse of x*(1-x^2)/(1+x^2) = x+2*x^3+10*x^5+66*x^7+.... Let f(x) = (1+x^2)^2/(1-4*x^2+x^4) and let D be the operator f(x)*d/dx. Then a(n) equals 1/(2*n+1)!*D^(2*n)(f(x)) evaluated at x = 0. For a refinement of this sequence see A196201. - _Peter Bala_, Sep 29 2011
%F A027307 D-finite with recurrence: 2*n*(2*n+1)*a(n) = (46*n^2-49*n+12)*a(n-1) - 3*(6*n^2-26*n+27)*a(n-2) - (n-3)*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 08 2012
%F A027307 a(n) ~ sqrt(50+30*sqrt(5))*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 08 2012. Equivalently, a(n) ~ phi^(5*n + 1) / (2 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 07 2021
%F A027307 a(n) = 2*hypergeom([1 - n, -2*n], [2], 2) for n >= 1. - _Peter Luschny_, Nov 08 2021
%F A027307 From _Peter Bala_, Jun 16 2023: (Start)
%F A027307 P-recursive: n*(2*n + 1)*(5*n - 7)*a(n) = (110*n^3 - 264*n^2 + 181*n - 36)*a(n-1) + (n - 2)*(2*n - 3)*(5*n - 2)*a(n-2) with a(0) = 1 and a(1) = 2.
%F A027307 The g.f. A(x) = 1 + 2*x + 10*x^2 + 66*x^3 + ... satisfies A(x)^2 = (1/x) * the series reversion of x*((1 - x)/(1 + x))^2.
%F A027307 Define b(n) = [x^(2*n)] ( (1 + x)/(1 - x) )^n = (1/2) * [x^n] ((1 + x)/(1 - x))^(2*n) = A103885(n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ). (End)
%F A027307 a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0. - _Seiichi Manyama_, Aug 09 2023
%e A027307 a(2) = 10. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf vertices shown as o.
%e A027307 ........b...........b.............w...........w.....
%e A027307 ......./|\........./|\.........../|\........./|\....
%e A027307 ....../.|.\......./.|.\........./.|.\......./.|.\...
%e A027307 .....b..o..o.....o..b..o.......w..o..o.....o..w..o..
%e A027307 ..../|\............/|\......../|\............/|\....
%e A027307 .../.|.\........../.|.\....../.|.\........../.|.\...
%e A027307 ..o..o..o........o..o..o....o..o..o........o..o..o..
%e A027307 ....................................................
%e A027307 ........b...........b.............w...........w.....
%e A027307 ......./|\........./|\.........../|\........./|\....
%e A027307 ....../.|.\......./.|.\........./.|.\......./.|.\...
%e A027307 .....w..o..o.....o..w..o.......b..o..o.....o..b..o..
%e A027307 ..../|\............/|\......../|\............/|\....
%e A027307 .../.|.\........../.|.\....../.|.\........../.|.\...
%e A027307 ..o..o..o........o..o..o....o..o..o........o..o..o..
%e A027307 ....................................................
%e A027307 ........b...........w..........
%e A027307 ......./|\........./|\.........
%e A027307 ....../.|.\......./.|.\........
%e A027307 .....o..o..w.....o..o..b.......
%e A027307 ........../|\........./|\......
%e A027307 ........./.|.\......./.|.\.....
%e A027307 ........o..o..o.....o..o..o....
%e A027307 ...............................
%e A027307 From _Alexander Burstein_, Feb 14 2025: (Start)
%e A027307 a(2) = 10 as the maximum number of distinct sets obtained as complete parenthesizations of S_1 u(nion) S_2 (i)n(tersect) S_3 u(nion) S_4 (i)n(tersect) S_5:
%e A027307 S_1 u (S_2 n (S_3 u (S_4 n S_5))),
%e A027307 S_1 u (S_2 n ((S_3 u S_4) n S_5)) = S_1 u ((S_2 n (S_3 u S_4)) n S_5),
%e A027307 S_1 u ((S_2 n S_3) u (S_4 n S_5)) = (S_1 u (S_2 n S_3)) u (S_4 n S_5),
%e A027307 S_1 u (((S_2 n S_3) u S_4) n S_5),
%e A027307 (S_1 u S_2) n (S_3 u (S_4 n S_5)),
%e A027307 (S_1 u S_2) n ((S_3 u S_4) n S_5) = ((S_1 u S_2) n (S_3 u S_4)) n S_5,
%e A027307 ((S_1 u S_2) n S_3) u (S_4 n S_5),
%e A027307 (S_1 u (S_2 n (S_3 u S_4))) n S_5,
%e A027307 (S_1 u ((S_2 n S_3) u S_4)) n S_5 = ((S_1 u (S_2 n S_3)) u S_4) n S_5,
%e A027307 (((S_1 u S_2) n S_3) u S_4) n S_5. (End)
%t A027307 a[n_] := ((n+1)*(2n)!*Hypergeometric2F1[-n, 2n+1, n+2, -1]) / (n+1)!^2;
%t A027307 Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Nov 14 2011, after Pari *)
%t A027307 a[n_] := If[n == 0, 1, 2*Hypergeometric2F1[1 - n, -2 n, 2, 2]];
%t A027307 Table[a[n], {n, 0, 19}]  (* _Peter Luschny_, Nov 08 2021 *)
%o A027307 (PARI) a(n)=if(n<1,n==0,sum(i=0,n-1,2^(i+1)*binomial(2*n,i)*binomial(n,i+1))/n)
%o A027307 (PARI) a(n)=sum(k=0,n,binomial(2*n+k,n+2*k)*binomial(n+2*k,k)/(n+k+1)) \\ _Paul D. Hanna_
%o A027307 (PARI) a(n)=sum(k=0,n, binomial(n,k)*binomial(2*n+k+1,n)/(2*n+k+1) ) /* _Michael Somos_, May 23 2005 */
%Y A027307 Cf. A104978. A196201.
%Y A027307 The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - _N. J. A. Sloane_, Mar 28 2021
%Y A027307 Apart from first term, this is 2*A034015. - _N. J. A. Sloane_, Mar 28 2021
%K A027307 nonn,easy
%O A027307 0,2
%A A027307 _Emeric Deutsch_