cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027319 a(n) = Sum_{k=0..m} (k+1) * A026082(n, k), where 0 <= k <= m, m=n for n=0,1,2,3; m=2n for n >= 4.

Original entry on oeis.org

1, 3, 8, 20, 120, 432, 1512, 5184, 17496, 58320, 192456, 629856, 2047032, 6613488, 21257640, 68024448, 216827928, 688747536, 2181033864, 6887475360, 21695547384, 68186006064, 213856109928, 669462604992, 2092070640600, 6527260398672, 20334926626632
Offset: 0

Views

Author

Keywords

Comments

Or, a(n) = Sum_{k=0..m} (k+1)*T(n,m-k), m=n for n=0,1,2,3; m=2n for n >= 4; T given by A026082.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x - x^2 - x^3 + 72 x^4 - 108 x^5)/(1 - 3 x)^2, {x, 0, 26}], x] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    Vec((1-3*x-x^2-x^3+72*x^4-108*x^5)/(1-3*x)^2 + O(x^30)) \\ Colin Barker, Feb 17 2016

Formula

For n>3, a(n) = 8*(n+1)*3^(n-3).
From Colin Barker, Feb 17 2016: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) for n>5.
G.f.: (1 - 3*x - x^2 - x^3 + 72*x^4 - 108*x^5) / (1-3*x)^2.
(End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 05 2007