cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027338 Number of partitions of n that do not contain 4 as a part.

This page as a plain text file.
%I A027338 #13 Nov 04 2016 12:03:31
%S A027338 1,1,2,3,4,6,9,12,17,23,31,41,55,71,93,120,154,196,250,314,396,495,
%T A027338 617,765,948,1166,1434,1755,2143,2607,3168,3832,4631,5578,6706,8041,
%U A027338 9628,11494,13705,16302,19361,22946,27159,32076,37837,44551,52384,61493
%N A027338 Number of partitions of n that do not contain 4 as a part.
%F A027338 G.f.: (1-x^4) Product_{m>0} 1/(1-x^m).
%F A027338 a(n) = A000041(n)-A000041(n-4).
%F A027338 a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (3*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 4*Pi/(2*sqrt(6)))/sqrt(n) + (49/8 + 9/(2*Pi^2) + 3169*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016
%o A027338 (PARI) a(n)=if(n<0,0,polcoeff((1-x^4)/eta(x+x*O(x^n)),n))
%Y A027338 Column 4 of A175788.
%K A027338 nonn
%O A027338 0,3
%A A027338 _Clark Kimberling_
%E A027338 More terms from _Benoit Cloitre_, Dec 10 2002