cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027339 Number of partitions of n that do not contain 5 as a part.

This page as a plain text file.
%I A027339 #14 Jul 11 2018 12:52:01
%S A027339 1,1,2,3,5,6,10,13,19,25,35,45,62,79,105,134,175,220,284,355,451,561,
%T A027339 705,870,1085,1331,1644,2008,2463,2990,3646,4406,5339,6425,7745,9279,
%U A027339 11135,13288,15872,18875,22455,26606,31537,37246,43990,51796,60975
%N A027339 Number of partitions of n that do not contain 5 as a part.
%F A027339 G.f.: (1-x^5) Product_{m>0} 1/(1-x^m).
%F A027339 a(n) = A000041(n)-A000041(n-5).
%F A027339 a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 5*Pi/(2*sqrt(6)))/sqrt(n) + (61/8 + 9/(2*Pi^2) + 4921*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016
%t A027339 Table[Count[IntegerPartitions[n],_?(FreeQ[#,5]&)],{n,0,50}] (* _Harvey P. Dale_, Jul 11 2018 *)
%o A027339 (PARI) a(n)=if(n<0,0,polcoeff((1-x^5)/eta(x+x*O(x^n)),n))
%Y A027339 Column 5 of A175788.
%K A027339 nonn
%O A027339 0,3
%A A027339 _Clark Kimberling_
%E A027339 More terms from _Benoit Cloitre_, Dec 10 2002