This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027340 #14 Nov 04 2016 12:02:28 %S A027340 1,1,2,3,5,7,10,14,20,27,37,49,66,86,113,146,189,241,308,389,492,616, %T A027340 771,958,1190,1468,1809,2218,2716,3310,4029,4884,5913,7133,8592,10318, %U A027340 12373,14795,17666,21042,25028,29700,35197,41624,49160,57949,68220 %N A027340 Number of partitions of n that do not contain 6 as a part. %C A027340 Also number of partitions of n where no part appears more than five times. %F A027340 G.f.: (1-x^6) Product_{m>0} 1/(1-x^m). %F A027340 a(n) = A000041(n)-A000041(n-6). %F A027340 a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (2*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 6*Pi/(2*sqrt(6)))/sqrt(n) + (73/8 + 9/(2*Pi^2) + 7057*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016 %o A027340 (PARI) a(n)=if(n<0,0,polcoeff((1-x^6)/eta(x+x*O(x^n)),n)) %Y A027340 Column 6 of A175788. %K A027340 nonn %O A027340 0,3 %A A027340 _Clark Kimberling_ %E A027340 More terms from _Benoit Cloitre_, Dec 10 2002