cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027341 Number of partitions of n that do not contain 7 as a part.

This page as a plain text file.
%I A027341 #13 Sep 26 2021 12:03:09
%S A027341 1,1,2,3,5,7,11,14,21,28,39,51,70,90,120,154,201,255,329,413,526,657,
%T A027341 826,1024,1278,1573,1946,2383,2926,3563,4349,5267,6391,7707,9300,
%U A027341 11165,13412,16033,19173,22836,27195,32273,38291,45284,53538,63119,74373
%N A027341 Number of partitions of n that do not contain 7 as a part.
%F A027341 G.f.: (1-x^7) Product_{m>0} 1/(1-x^m).
%F A027341 a(n)=A000041(n)-A000041(n-7).
%F A027341 a(n) ~ 7*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 7*Pi/(2*sqrt(6)))/sqrt(n) + (85/8 + 9/(2*Pi^2) + 9577*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016
%t A027341 Table[Count[IntegerPartitions[n],_?(FreeQ[#,7]&)],{n,0,50}] (* _Harvey P. Dale_, Sep 26 2021 *)
%o A027341 (PARI) a(n)=if(n<0,0,polcoeff((1-x^7)/eta(x+x*O(x^n)),n))
%Y A027341 Column 7 of A175788.
%K A027341 nonn
%O A027341 0,3
%A A027341 _Clark Kimberling_
%E A027341 More terms from _Benoit Cloitre_, Dec 10 2002