A027415 Number of rooted unlabeled trees on n nodes having a primary branch.
0, 1, 1, 3, 6, 17, 37, 102, 239, 658, 1607, 4425, 11185, 30990, 80070, 222731, 586218, 1638333, 4370721, 12262003, 33077327, 93128828, 253454781, 715784848, 1962537755, 5557799401, 15332668869, 43527249088, 120716987723
Offset: 1
Keywords
References
- A. Meir and J. W. Moon, On the branch-sizes of rooted unlabeled trees, in "Graph Theory and Its Applications", Annals New York Acad. Sci., Vol. 576, 1989, pp. 399-407. [MR 1110839]
Links
Programs
-
Maple
N := 50: Y := [ 1,1 ]: for n from 3 to N do x*mul( (1-x^i)^(-Y[ i ]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); Y := [ op(Y),b ]; od: P:=n->sum(Y[n-i]*Y[i],i=1..floor(n/2)): seq(P(n),n=1..35); # Emeric Deutsch, Nov 21 2004
Formula
Let r(n) = A000081(n) = number of rooted trees on n nodes. Then a(n)=sum(r(n-i)*r(i), i=1..floor(n/2)) - Emeric Deutsch, Nov 21 2004. Comment from N. J. A. Sloane: The term r(n-i) gives the number of ways of picking the primary branch, while the term r(i) gives the number of ways of picking the rest of the tree including the root R.
Extensions
More terms from Emeric Deutsch, Nov 21 2004
Entry revised by N. J. A. Sloane, Feb 26 2007
Comments