This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027430 #38 Feb 09 2025 18:09:32 %S A027430 0,0,1,4,10,16,29,42,60,75,111,126,177,206,238,274,361,396,507,554, %T A027430 613,677,838,883,1004,1092,1198,1277,1529,1590,1881,1998,2133,2275, %U A027430 2432,2518,2921,3096,3278,3391,3884,4014,4563,4750,4938,5186,5840,5987,6422,6652 %N A027430 Number of distinct products i*j*k with 1 <= i < j < k <= n. %D A027430 Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, Smarandache Notions Journal, 1-2-3, Vol. 11, 2000. %H A027430 David A. Corneth, <a href="/A027430/b027430.txt">Table of n, a(n) for n = 1..700</a> (first 200 terms by T. D. Noe) %H A027430 Amarnath Murthy, <a href="http://vixra.org/pdf/1403.0647v1.pdf">Generalization of partition function introducing Smarandache Factor Partitions</a>, viXra:1403.0647, 2014. %H A027430 David A. Corneth, <a href="/A027430/a027430_1.gp.txt">Pari program</a> %F A027430 a(n) = A027429(n)-1. - _T. D. Noe_, Jan 16 2007 %F A027430 a(n) <= A000292(n - 2). - _David A. Corneth_, Jul 31 2018 %t A027430 nn = 50; %t A027430 prod = Table[0, {1 + nn^3}]; %t A027430 a[1] = 0; %t A027430 a[n_] := (Do[prod[[1 + i*j*k]] = 1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1 + n^3], 1] - 1); %t A027430 Array[a, nn] (* _Jean-François Alcover_, Jul 31 2018, after _T. D. Noe_ *) %o A027430 (Haskell) %o A027430 import Data.List (nub) %o A027430 a027430 n = length $ nub [i*j*k | k<-[3..n], j<-[2..k-1], i<-[1..j-1]] %o A027430 -- _Reinhard Zumkeller_, Jan 01 2012 %o A027430 (PARI) \\ See PARI link. _David A. Corneth_, Jul 31 2018 %o A027430 (Python) %o A027430 def A027430(n): return len({i*j*k for i in range(1,n+1) for j in range(1,i) for k in range(1,j)}) # _Chai Wah Wu_, Oct 16 2023 %Y A027430 Cf. A000292, A027425, A088434, A100435, A100436. %Y A027430 Number of terms in row n of A083507. %Y A027430 Cf. A027429, A027428. %K A027430 nonn %O A027430 1,4 %A A027430 _N. J. A. Sloane_ %E A027430 Corrected by _David Wasserman_, Nov 18 2004