This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027434 #73 Jan 22 2024 06:02:08 %S A027434 2,3,4,4,5,5,6,6,6,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11, %T A027434 11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15,15, %U A027434 15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,18,18,18,18 %N A027434 a(1) = 2; then defined by property that a(n) = smallest number >= a(n-1) such that successive runs have lengths 1,1,2,2,3,3,4,4. %C A027434 Also the sequence of first skipped terms for Beatty sequences in the family alpha = 1+sqrt(n)-sqrt(n-1). - _Alisa Ediger_, Jul 20 2016 %C A027434 Optimal cost for one-dimensional Racetrack over a distance n. - _Jason Schoeters_, Aug 18 2021 %C A027434 If b > 0 and c > 0 are the integer coefficients of a monic quadratic x^2 + b*x + c, it has integer roots if its discriminant d^2 = b^2 - 4c is a perfect square. This sequence is the values of b for increasing b sorted by b then c. The first pair of (b, c) = (2, 1) and has d = A082375(0) = 0. The n-th pair of (b, c) = (a(n), A350634(n)) and has d = A082375(n-1). - _Frank M Jackson_, Jan 21 2024 %D A027434 Sam Speed, An integer sequence (preprint). %H A027434 William A. Tedeschi, <a href="/A027434/b027434.txt">Table of n, a(n) for n = 1..10000</a> %H A027434 A. Casteigts, M. Raffinot and J. Schoeters, <a href="https://arxiv.org/abs/2006.03666">VectorTSP: A Traveling Salesperson Problem with Racetrack-like acceleration constraints</a>, Lemma 7, arXiv:2006.03666 [cs.DS], 2020-2021. %F A027434 a(n) = 1 + floor( sqrt(4*n-3) ) = 1+A000267(n-1). %F A027434 a(n) = A049068(n) - n. %F A027434 a(n) = A027709(n)/2. - _Tanya Khovanova_, Mar 04 2008 %F A027434 a(n) = ceiling(2*sqrt(n)). [_Mircea Merca_, Feb 07 2012] %F A027434 a(n) = floor(1+sqrt(n)+sqrt(n-1)). - _Alisa Ediger_, Jul 20 2016 %F A027434 G.f.: x*(1 + x^(-1/4)*theta_2(x) + theta_3(x))/(2*(1 - x)), where theta_k(x) is the Jacobi theta function. - _Ilya Gutkovskiy_, Jul 20 2016 %F A027434 a(n) = 1 + floor(sqrt(4*n-1)). - _Chai Wah Wu_, Jul 27 2022 %F A027434 a(n) = sqrt((A082375(n))^2 + 4*A350634(n+1)). - _Frank M Jackson_, Jan 21 2024 %p A027434 A027434:=n->ceil(2*sqrt(n)); seq(A027434(n), n=1..100); # _Wesley Ivan Hurt_, Mar 01 2014 %t A027434 Table[Ceiling[2*Sqrt[n]], {n, 100}] (* _Wesley Ivan Hurt_, Mar 01 2014 *) %t A027434 Sort[Flatten[Table[#,{#[[1]]/2}]]]&/@Partition[Range[2,20],2]//Flatten (* _Harvey P. Dale_, Sep 05 2019 *) %t A027434 lst = {}; Do[If[IntegerQ[d=Sqrt[b^2-4 c]], AppendTo[lst, b]], {b, 1, 20}, {c, 1, b^2/4}]; lst (* _Frank M Jackson_, Jan 21 2024 *) %o A027434 (Haskell) %o A027434 a027434 = (+ 1) . a000196 . (subtract 3) . (* 4) %o A027434 a027434_list = 2 : concat (map (\x -> replicate (x `div` 2) x) [3..]) %o A027434 -- _Reinhard Zumkeller_, Mar 23 2013, Nov 22 2011 %o A027434 (PARI) a(n)=sqrtint(4*n-3)+1 \\ _Charles R Greathouse IV_, Feb 07 2012 %o A027434 (Python) %o A027434 from math import isqrt %o A027434 def A027434(n): return 1+isqrt((n<<2)-1) # _Chai Wah Wu_, Jul 27 2022 %Y A027434 Cf. A000267, A049068, A027709. %Y A027434 Cf. A082375, A350634. %K A027434 nonn,nice,easy %O A027434 1,1 %A A027434 Sam Speed (SPEEDS(AT)msci.memphis.edu) %E A027434 More terms from Courtney Clipp (cclipp(AT)ashland.edu), Dec 08 2004