This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027435 #28 Nov 18 2018 09:04:32 %S A027435 1,2,4,6,10,11,17,21,27,29,39,42,54,57,62,70,86,89,107,113,120,125, %T A027435 147,152,172,178,196,204,232,236,266,282,294,302,320,329,365,374,388, %U A027435 400,440,446,488,501,518,529,575,586,628,638,657,672,724,733,758,778 %N A027435 Number of distinct products ij with 1 <= i <= n, 1 <= j <= n, (i,j)=1. %C A027435 S. W. Golomb, personal communication, Svalbard, Norway, 7/97. %H A027435 Andrew Howroyd, <a href="/A027435/b027435.txt">Table of n, a(n) for n = 1..10000</a> %H A027435 Harri Hakula, Pauliina Ilmonen, Vesa Kaarnioja, <a href="https://arxiv.org/abs/1705.05163">Computation of extremal eigenvalues of high-dimensional lattice-theoretic tensors via tensor-train decompositions</a>, arXiv:1705.05163 [math.NA], 2017. See Table 2, d=4,5. %F A027435 a(n) = Sum_{k=1..n} A014665(n). - _Sean A. Irvine_, Nov 15 2018 %F A027435 For n>1: # of positive integers u <= n(n-1) such that p^H_p(u)<=n for all p<=u, where H_p(u) = highest power of p dividing u. %F A027435 a(n) = A236309(n) + 1. - _Andrew Howroyd_, Nov 16 2018 %p A027435 A027435 := proc(n) %p A027435 local L, i, j ; %p A027435 L := {}; %p A027435 for i from 1 to n do %p A027435 for j from 1 to n do %p A027435 if igcd(i,j) = 1 then %p A027435 L := L union {i*j}; %p A027435 end if; %p A027435 end do: %p A027435 end do: %p A027435 nops(L); %p A027435 end proc: # _R. J. Mathar_, Jun 09 2016 %t A027435 Array[-Boole[# > 1] + Length@ Union@ Apply[Join, Table[If[CoprimeQ @@ #, i j, 0] &@ {i, j}, {i, #}, {j, #}]] &, 56] (* _Michael De Vlieger_, Nov 01 2017 *) %o A027435 (PARI) a(n)={#Set(concat(vector(n, i, [i*j | j<-[1..n], gcd(i,j)==1])))} \\ _Andrew Howroyd_, Nov 15 2018 %o A027435 (PARI) seq(n)={my(v=vector(n),t=1);for(n=1, n, t+=sum(i=1, n-1, gcd(i,n) == 1 && 0==sumdiv(i*n, d, my(t=i*n/d); gcd(t,d)==1 && d<n && t<d)); v[n]=t); v} \\ _Andrew Howroyd_, Nov 16 2018 %Y A027435 Cf. A014665, A236309. %K A027435 nonn %O A027435 1,2 %A A027435 _N. J. A. Sloane_ %E A027435 More terms from _Olivier Gérard_, Nov 15 1997