This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027446 #30 May 06 2022 17:00:42 %S A027446 1,3,1,11,5,2,25,13,7,3,137,77,47,27,12,147,87,57,37,22,10,1089,669, %T A027446 459,319,214,130,60,2283,1443,1023,743,533,365,225,105,7129,4609,3349, %U A027446 2509,1879,1375,955,595,280,7381,4861,3601,2761,2131,1627,1207,847,532,252 %N A027446 Triangle read by rows: square of the lower triangular mean matrix. %C A027446 Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by _M. F. Hasler_, Nov 05 2019] %H A027446 L. Bendersky, <a href="https://projecteuclid.org/journals/acta-mathematica/volume-61/issue-none/Sur-la-fonction-gamma-g%C3%A9n%C3%A9ralis%C3%A9e/10.1007/BF02547794.full">Sur la fonction gamma généralisée</a>, Acta Math. 61 (1933), p. 263-322. See p. 295. %F A027446 The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j). %F A027446 a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise. %e A027446 Triangle starts %e A027446 1 %e A027446 3, 1 %e A027446 11, 5, 2 %e A027446 25, 13, 7, 3 %e A027446 137, 77, 47, 27, 12 %e A027446 147, 87, 57, 37, 22, 10 %e A027446 1089, 669, 459, 319, 214, 130, 60 %e A027446 2283, 1443, 1023, 743, 533, 365, 225, 105 %e A027446 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280 %e A027446 ... - _Joerg Arndt_, Mar 29 2013 %t A027446 rows = 10; %t A027446 M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2]; %t A027446 T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}]; %t A027446 Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 05 2013, updated May 06 2022 *) %o A027446 (PARI) A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ _M. F. Hasler_, Nov 05 2019 %Y A027446 The row sums give A081528(n), n>=1. %Y A027446 The column sequences give A025529, A027457, A027458 for j=1..3. %Y A027446 The diagonal sequences give A002944, A027449, A027450. %Y A027446 Cf. A027447, A027448. %K A027446 nonn,tabl %O A027446 1,2 %A A027446 _Olivier Gérard_ %E A027446 Edited by _M. F. Hasler_, Nov 05 2019