This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027447 #27 Nov 06 2019 18:19:36 %S A027447 1,7,1,85,19,4,415,115,37,9,12019,3799,1489,549,144,13489,4669,2059, %T A027447 919,364,100,726301,268921,128431,64171,30676,12700,3600,3144919, %U A027447 1227199,621139,334699,178669,89125,38025,11025,30300391,12335311,6527971,3714811,2134141,1187125,609625,265825,78400 %N A027447 Triangle read by rows: cube of the lower triangular mean matrix. %F A027447 Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by _M. F. Hasler_, Nov 05 2019] %e A027447 Triangle begins: %e A027447 1; %e A027447 7, 1; %e A027447 85, 19, 4; %e A027447 415, 115, 37, 9; %e A027447 12019, 3799, 1489, 549, 144, %e A027447 ... %t A027447 rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* _Jean-François Alcover_, Mar 05 2013 *) %o A027447 (PARI) tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n,1..n]); print(denominator(row)*row))} \\ _Michel Marcus_, Nov 05 2019, edited by _M. F. Hasler_, Nov 05 2019 %o A027447 (PARI) A027447_row(n)=denominator(n=(matrix(n,n, i,j, (j<=i)/i)^3)[n,])*n \\ _M. F. Hasler_, Nov 05 2019 %Y A027447 Cf. A027446, A027448. %K A027447 nonn,tabl %O A027447 1,2 %A A027447 _Olivier Gérard_ %E A027447 More terms from _Michel Marcus_, Nov 05 2019