This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027466 #54 Aug 05 2025 03:41:58 %S A027466 1,7,1,49,14,1,343,147,21,1,2401,1372,294,28,1,16807,12005,3430,490, %T A027466 35,1,117649,100842,36015,6860,735,42,1,823543,823543,352947,84035, %U A027466 12005,1029,49,1,5764801,6588344,3294172,941192,168070,19208,1372,56,1 %N A027466 Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j). %C A027466 T(i,j) is the number of i-permutations of 8 objects a,b,c,d,e,f,g,h, with repetition allowed, containing j a's. - _Zerinvary Lajos_, Dec 21 2007 %C A027466 Triangle of coefficients in the expansion of (7 + x)^n, where n is a nonnegative integer. - _Zagros Lalo_, Jul 21 2018 %D A027466 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48 %H A027466 Harvey P. Dale, <a href="/A027466/b027466.txt">Table of n, a(n) for n = 0..5000</a> %H A027466 B. N. Cyvin et al., <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match34/match34_109-121.pdf">Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons</a>, Match, No. 34 (Oct 1996), pp. 109-121. %F A027466 Cube of lower triangular normalized Binomial matrix. %F A027466 Numerators of lower triangle of (a( i, j ))^3 where a( i, j ) = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 otherwise. %F A027466 T(0,0) = 1; T(n,k) = 7*T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - _Zagros Lalo_, Jul 21 2018 %e A027466 Triangle begins: %e A027466 1; %e A027466 7, 1; %e A027466 49, 14, 1; %e A027466 343, 147, 21, 1; %e A027466 2401, 1372, 294, 28, 1; %e A027466 16807, 12005, 3430, 490, 35, 1; %e A027466 117649, 100842, 36015, 6860, 735, 42, 1; %e A027466 823543, 823543, 352947, 84035, 12005, 1029, 49, 1; %e A027466 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1; %p A027466 for i from 0 to 8 do seq(binomial(i, j)*7^(i-j), j = 0 .. i) od; # _Zerinvary Lajos_, Dec 21 2007 %t A027466 Flatten[Table[Binomial[i,j]7^(i-j),{i,0,10},{j,0,i}]] (* _Harvey P. Dale_, Dec 03 2012 *) %t A027466 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Zagros Lalo_, Jul 21 2018 *) %t A027466 Table[CoefficientList[ Expand[(7 + x)^n], x], {n, 0, 8}] // Flatten (* _Zagros Lalo_, Jul 22 2018 *) %o A027466 (GAP) Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*7^(i-j)))); # _Muniru A Asiru_, Jul 21 2018 %Y A027466 Cf. A007318, A038207. %Y A027466 Cf. A317014 %K A027466 nonn,tabl,easy %O A027466 0,2 %A A027466 _Olivier Gérard_ %E A027466 Simpler definition from _N. J. A. Sloane_