This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027469 #29 Sep 04 2022 04:11:37 %S A027469 49,147,294,490,735,1029,1372,1764,2205,2695,3234,3822,4459,5145,5880, %T A027469 6664,7497,8379,9310,10290,11319,12397,13524,14700,15925,17199,18522, %U A027469 19894,21315,22785,24304,25872,27489,29155,30870,32634,34447,36309,38220,40180 %N A027469 a(n) = 49*(n-1)*(n-2)/2. %H A027469 Vincenzo Librandi, <a href="/A027469/b027469.txt">Table of n, a(n) for n = 3..10000</a> %H A027469 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A027469 Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^3 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i. %F A027469 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(3)=49, a(4)=147, a(5)=294. - _Harvey P. Dale_, Aug 24 2011 %F A027469 G.f.: 49*x^3/(1-x)^3. - _Harvey P. Dale_, Aug 24 2011 %F A027469 From _Amiram Eldar_, Sep 04 2022: (Start) %F A027469 a(n) = A162942(n-2). %F A027469 Sum_{n>=3} 1/a(n) = 2/49. %F A027469 Sum_{n>=3} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End) %t A027469 Table[49(n-1)(n-2)/2,{n,3,70}] (* or *) LinearRecurrence[{3,-3,1},{49,147,294},70] (* _Harvey P. Dale_, Aug 24 2011 *) %o A027469 (Magma) [49*(n-1)*(n-2)/2: n in [3..50]]; // _Vincenzo Librandi_, Aug 25 2011 %o A027469 (PARI) a(n)=49*(n-1)*(n-2)/2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A027469 Third diagonal of A027466. %Y A027469 Cf. A162942. %K A027469 nonn,easy %O A027469 3,1 %A A027469 _Olivier Gérard_ %E A027469 More terms from _Harvey P. Dale_, Aug 24 2011