cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027473 Second column of A027466.

This page as a plain text file.
%I A027473 #34 May 05 2024 20:01:35
%S A027473 1,14,147,1372,12005,100842,823543,6588344,51883209,403536070,
%T A027473 3107227739,23727920916,179936733613,1356446145698,10173346092735,
%U A027473 75960984159088,564959819683217,4187349251769726,30939858360298531,227977903707462860,1675637592249852021,12288009009832248154
%N A027473 Second column of A027466.
%D A027473 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H A027473 Vincenzo Librandi, <a href="/A027473/b027473.txt">Table of n, a(n) for n = 1..300</a>
%H A027473 Frank Ellermann, <a href="/A001792/a001792.txt">Illustration of binomial transforms</a>.
%H A027473 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-49).
%F A027473 a(n) = n*7^(n-1).
%F A027473 a(n) = 14*a(n-1) - 49*a(n-2) with a(1) = 1, a(2) = 14.
%F A027473 a(n) = A003415(7^n). - _Bruno Berselli_, Oct 22 2013
%F A027473 From _Amiram Eldar_, Oct 28 2020: (Start)
%F A027473 Sum_{n>=1} 1/a(n) = 7*log(7/6).
%F A027473 Sum_{n>=1} (-1)^(n+1)/a(n) = 7*log(8/7). (End)
%F A027473 From _Stefano Spezia_, May 05 2024: (Start)
%F A027473 G.f.: x/(1 - 7*x)^2.
%F A027473 E.g.f.: x*exp(7*x). (End)
%t A027473 Join[{a=1,b=14},Table[c=14*b-49*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 01 2011 *)
%t A027473 LinearRecurrence[{14,-49},{1, 14},19] (* _Stefano Spezia_, May 05 2024 *)
%o A027473 (Magma) [n*7^(n-1): n in [1..35]]; // _Vincenzo Librandi_, Jun 06 2011
%Y A027473 Cf. A001787, A003415, A053464, A053469.
%K A027473 nonn,easy
%O A027473 1,2
%A A027473 _Olivier Gérard_
%E A027473 More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001
%E A027473 Offset changed from 2 to 1 by _Vincenzo Librandi_, Jun 06 2011