This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027477 #8 Jan 20 2019 07:54:26 %S A027477 1,3,1,23,12,1,330,215,30,1,7604,5700,1035,60,1,256620,212464,45675, %T A027477 3535,105,1,11923260,10645152,2582209,241080,9730,168,1,729524880, %U A027477 691560092,183962268,19661649,970200,23058,252,1 %N A027477 Triangle of the square of the normalized, unsigned Stirling matrix of the first kind. %F A027477 Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^2)). %F A027477 T is the lower triangular matrix A.A.N. %e A027477 First rows of the triangle are: %e A027477 1, %e A027477 3,1, %e A027477 23,12,1, %e A027477 330,215,30,1, %e A027477 7604,5700,1035,60,1, %e A027477 256620,212464,45675,3535,105,1 %e A027477 ... %t A027477 Module[{nmax=8,m},m=(Table[Table[(-1)^(i+j) StirlingS1[i,j]/i!,{j,1,nmax}],{i,1,nmax}]);m=m.m*Table[i!^2,{i,1,nmax}]; Flatten[Table[Table[m[[i,j]],{j,1,i}],{i,1,nmax}],1]] %Y A027477 Cf. A027478, A027479 (third and fourth power). %K A027477 nonn,tabl,easy %O A027477 1,2 %A A027477 _Olivier Gérard_ %E A027477 Definition, formula and program edited for clarity by _Olivier Gérard_, Jan 20 2019