This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027478 #14 May 07 2025 14:34:49 %S A027478 1,7,1,176,39,1,10746,2951,126,1,1297704,407450,22535,310,1,272866980, %T A027478 94128364,6139575,112435,645,1,91570835040,33910601508,2487385684, %U A027478 54814095,426475,1197,1,46034917019280,18030534782364,1446119232796,36402686929,345710680,1333906,2044,1 %N A027478 Triangle of the cube of the normalized, unsigned Stirling matrix of the first kind. %C A027478 The absolute values are unchanged if one uses the signed Stirling numbers of the first kind. %F A027478 Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^3)). %F A027478 T is the lower triangular matrix A.A.A.N. %e A027478 The first rows of the triangle are : %e A027478 1, %e A027478 7, 1, %e A027478 176, 39, 1, %e A027478 10746, 2951, 126, 1, %e A027478 1297704, 407450, 22535, 310, 1, %e A027478 272866980, 94128364, 6139575, 112435, 645, 1, %e A027478 ... %t A027478 Module[{nmax=8,m},m=(Table[Table[(-1)^(i+j) StirlingS1[i,j]/i!,{j,1,nmax}],{i,1,nmax}]);m=m.m.m*Table[i!^3,{i,1,nmax}]; Flatten[Table[Table[m[[i,j]],{j,1,i}],{i,1,nmax}],1]] %Y A027478 Cf. A027477 for the quadratic version. %Y A027478 Cf. A027479 for the quartic version. %Y A027478 Cf. A027482 is the first subdiagonal of this triangle. %K A027478 nonn,tabl,easy %O A027478 1,2 %A A027478 _Olivier Gérard_ %E A027478 Definition, formula and program edited for clarity by _Olivier Gérard_, Jan 20 2019