This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027555 #35 Nov 24 2023 16:12:58 %S A027555 1,1,-1,1,-2,3,1,-3,6,-10,1,-4,10,-20,35,1,-5,15,-35,70,-126,1,-6,21, %T A027555 -56,126,-252,462,1,-7,28,-84,210,-462,924,-1716,1,-8,36,-120,330, %U A027555 -792,1716,-3432,6435,1,-9,45,-165,495,-1287,3003,-6435,12870,-24310,1,-10,55,-220,715,-2002,5005,-11440,24310,-48620,92378 %N A027555 Triangle of binomial coefficients C(-n,k). %D A027555 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 164. %D A027555 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 2. %H A027555 T. D. Noe, <a href="/A027555/b027555.txt">Rows n = 0..50 of triangle, flattened</a> %F A027555 T(n,k) = binomial(-n,k) = (-1)^k*binomial(n+k-1,k). - _R. J. Mathar_, Feb 06 2015 %F A027555 T(n, k) = (-1)^k * RisingFactorial(n, k) / k!. - _Peter Luschny_, Nov 24 2023 %e A027555 Triangle starts: %e A027555 1; %e A027555 1, -1; %e A027555 1, -2, 3; %e A027555 1, -3, 6, -10; %e A027555 1, -4, 10, -20, 35; %e A027555 1, -5, 15, -35, 70, -126; %e A027555 ... %p A027555 A027555 := proc(n,k) %p A027555 (-1)^k*binomial(n+k-1,k) ; %p A027555 end proc: %p A027555 seq(seq(A027555(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Feb 06 2015 %t A027555 Flatten[Table[Binomial[-n,k],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Apr 30 2012 *) %o A027555 (PARI) T(n,k)=binomial(-n,k) \\ _Charles R Greathouse IV_, Feb 06 2017 %o A027555 (Magma) /* As triangle */ [[Binomial(-n, k): k in [0..n]]: n in [0..11]]; // _G. C. Greubel_, Nov 21 2017 %o A027555 (SageMath) %o A027555 def T(n,k): %o A027555 return (-1)^k * rising_factorial(n, k) // factorial(k) %o A027555 for n in range(9): %o A027555 print([T(n, k) for k in range(n+1)]) # _Peter Luschny_, Nov 24 2023 %Y A027555 For the unsigned triangle see A059481. %K A027555 sign,tabl,nice,easy %O A027555 0,5 %A A027555 _N. J. A. Sloane_, _Olivier Gérard_