This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027567 #26 Feb 16 2025 08:32:35 %S A027567 1,0,0,48,3600,0 %N A027567 Number of distinct (modulo rotation and reflection) n X n panmagic = pandiagonal = diabolic = Nasik squares. %D A027567 Hunter, J. A. H. and Madachy, J. S. "Mystic Arrays." Ch. 3 in Mathematical Diversions. New York: Dover, pp. 24-25, 1975. %H A027567 Harvey Heinz, <a href="http://www.magic-squares.net/pandiag5.htm">Pandiagonal 5 X 5</a>. %H A027567 D. N. Lehmer, <a href="http://dx.doi.org/10.1090/S0002-9904-1933-05790-7">A census of squares of order 4, magic in rows, columns, and diagonals</a>, Bull. Amer. Math. Soc. 39 (1933), 981-982. %H A027567 Wolfgang Müller, <a href="https://www.mat.univie.ac.at/~slc/wpapers/s39mueller.html">Group Actions on Magic Squares</a>, Séminaire Lotharingien de Combinatoire, B39b (1997), 14 pp. %H A027567 Barkley Rosser and R. J. Walker, <a href="http://dx.doi.org/10.1090/S0002-9904-1938-06774-2">On the transformation group for diabolic magic squares of order four</a>, Bull. Amer. Math. Soc. 44 (1938), 416-420. %H A027567 Walter Trump, <a href="http://www.trump.de/magic-squares/howmany.html">How many magic squares are there? - Results of historical and computer enumeration</a>. %H A027567 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PanmagicSquare.html">Panmagic Square</a> %H A027567 <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a> %Y A027567 Cf. A006052. %K A027567 nonn,hard,more %O A027567 1,4 %A A027567 _Eric W. Weisstein_ %E A027567 Corrected by _Eric Weisstein_, Mar 14 2003 to include only distinct squares; Hunter and Madachy give the count of all such squares (there are 384).