This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027570 #47 Nov 04 2021 13:10:15 %S A027570 9853497737,21956291867,22741837817,164444511587,179590045487, %T A027570 217999764107,231255798857,242360943257,666413245007,696391309697, %U A027570 867132039857,974275568237,976136848847,1002263588297,1086344116367 %N A027570 Initial members of prime decaplets (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26, p+30, p+32). %C A027570 All terms are congruent to 167 (modulo 210). - _Matt C. Anderson_, May 29 2015 %H A027570 Matt C. Anderson and Dana Jacobsen, <a href="/A027570/b027570.txt">Table of n, a(n) for n = 1..10000</a> [first 100 terms from Matt C. Anderson] %H A027570 Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets.htm">Prime k-tuplets</a> %H A027570 Norman Luhn, <a href="http://www.pzktupel.de/SMArchiv/10tup2.zip">1 million terms of A027570</a>, zip compressed (7.94 MB) (2021). %p A027570 a := 1: %p A027570 for b to 25 do %p A027570 a := a*ithprime(b): %p A027570 end do: %p A027570 a; %p A027570 # now 'a' is the product of the primes less than 100. %p A027570 composite_small := proc (n::integer) %p A027570 description "procedure to determine if n has a prime factor less than 100"; %p A027570 if igcd(2305567963945518424753102147331756070, n) = 1 then return false %p A027570 else return true; %p A027570 end if; %p A027570 end proc: %p A027570 # so composite_small tests if there are any factors 2 through 97. %p A027570 #begin initialization section %p A027570 p := [0, 2, 6, 12, 14, 20, 24, 26, 30, 32]; %p A027570 o := [7517, 10247, 12137, 14447, 14867, 17177, 21377, 24107, 25997, 28727]; %p A027570 m := 30030; %p A027570 #end initialization section %p A027570 # implement isprime(m*n+o+p) %p A027570 with(ArrayTools): %p A027570 os:=Size(o,2): %p A027570 ps:=Size(p,2): %p A027570 #here ps is 10 so a prime constellation of length 10. %p A027570 loopstop := 10^11: %p A027570 loopstart := 0: %p A027570 for n from loopstart to loopstop do %p A027570 for a to os do %p A027570 counter := 0; wc := 0; wd := 0; %p A027570 while `and`(wd > -10, wd < ps) do %p A027570 wd := wd+1; %p A027570 if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 %p A027570 else wd := -10 end if; %p A027570 end do; %p A027570 if wd >= 9 then %p A027570 while `and`(counter >= 0, wc < ps) do %p A027570 wc := wc+1; %p A027570 if isprime(m*n+o[a]+p[wc]) then counter := counter+1; %p A027570 else counter := -1 %p A027570 end if; %p A027570 end do; %p A027570 end if; %p A027570 if counter = ps then print(m*n+o[a]) end if; %p A027570 end do: %p A027570 end do: %p A027570 # _Matt C. Anderson_, Apr 15 2015 %o A027570 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e13, 2,6,12,14,20,24,26,30,32); # _Dana Jacobsen_, Sep 30 2015 %Y A027570 Cf. A027569, A202361, A202362. %K A027570 nonn %O A027570 1,1 %A A027570 _Warut Roonguthai_