This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027611 #78 Feb 16 2025 08:32:35 %S A027611 1,1,2,3,12,10,20,35,280,252,2520,2310,27720,25740,24024,45045,720720, %T A027611 680680,4084080,3879876,739024,235144,5173168,14872858,356948592, %U A027611 343219800,2974571600,2868336900,80313433200,77636318760 %N A027611 Denominator of n * n-th harmonic number. %C A027611 This is very similar to A128438, which is a different sequence. They differ at n=6 (and nowhere else?). - _N. J. A. Sloane_, Nov 21 2008 %C A027611 Denominator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n. %C A027611 Denominator of Sum_{k=1..n} frac(n/k) where frac(x/y) denotes the fractional part of x/y. - _Benoit Cloitre_, Oct 03 2002 %C A027611 Denominator of Sum_{d=2..n-1, n mod d > 0} n/d. Numerator = A079076. - _Reinhard Zumkeller_, Dec 21 2002 %C A027611 a(n) is odd iff n is a power of 2. - _Benoit Cloitre_, Oct 03 2002 %C A027611 Indices where a(n) differs from A128438 are terms of A074791. - _Gary Detlefs_, Sep 03 2011 %H A027611 Reinhard Zumkeller, <a href="/A027611/b027611.txt">Table of n, a(n) for n = 1..1000</a> %H A027611 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteSet.html">Complete Set</a> %F A027611 From _Vladeta Jovovic_, Sep 02 2002: (Start) %F A027611 a(n) = denominators of coefficients in expansion of -log(1-x)/(1-x)^2. %F A027611 a(n) = denominators of (n+1)*(harmonic(n+1) - 1). %F A027611 a(n) = denominators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End) %F A027611 a(n) = numerator(h(n)/h(n-1)) - denominator(h(n)/h(n-1)), n > 1, where h(n) is the n-th harmonic number. - _Gary Detlefs_, Sep 03 2011 %F A027611 a(n) = A213999(n, n-2) for n > 1. - _Reinhard Zumkeller_, Jul 03 2012 %F A027611 a(n) = denominators of coefficients of e.g.f. -1 + exp(x)*(1 + Sum_{j >= 0} (-x)^(j+1)/(j * j!)). - _G. C. Greubel_, Aug 24 2022 %p A027611 a := n -> denom(add((n-j)/j, j=1..n)); %p A027611 seq(a(n), n = 1..30); # _Peter Luschny_, May 12 2023 %t A027611 a[n_]:=Denominator[n*HarmonicNumber[n]]; Array[a,100] (* _Vladimir Joseph Stephan Orlovsky_, Feb 16 2011 *) %o A027611 (Haskell) %o A027611 import Data.Ratio ((%), denominator) %o A027611 a027611 n = denominator $ sum $ map (n %) [1..n] %o A027611 -- _Reinhard Zumkeller_, Jul 03 2012 %o A027611 (Magma) [Denominator(n*HarmonicNumber(n)): n in [1..40]]; // _Vincenzo Librandi_, Feb 19 2014 %o A027611 (PARI) a(n) = denominator(n*sum(k=1, n, 1/k)); \\ _Michel Marcus_, Feb 15 2015 %o A027611 (Python) %o A027611 from sympy import harmonic %o A027611 def A027611(n): return (n*harmonic(n)).q # _Chai Wah Wu_, Sep 26 2021 %o A027611 (SageMath) [denominator(n*harmonic_number(n)) for n in (1..40)] # _G. C. Greubel_, Aug 24 2022 %Y A027611 Harmonic numbers = A001008/A002805. %Y A027611 Cf. A001705, A006675, A027612, A049820, A024816. %Y A027611 Cf. A128438, A074791, A079076. %K A027611 nonn,easy,frac %O A027611 1,3 %A A027611 Glen Burch (gburch(AT)erols.com) %E A027611 Entry revised by _N. J. A. Sloane_ following a suggestion of _Eric W. Weisstein_, Jul 02 2004