cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027618 c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n).

This page as a plain text file.
%I A027618 #14 Oct 07 2013 03:24:56
%S A027618 1,4,19,94,481,2524,13483,72958,398593,2193844,12146179,67570078,
%T A027618 377393953,2114900428,11885772379,66963572734,378082854913,
%U A027618 2138752086628,12118975586803,68774144872414,390815720696161,2223564321341884
%N A027618 c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n).
%D A027618 Found by 7 students: Dufour, Hermon, Lesueur, Moynot, Schabanel, Sers and Wolf.
%H A027618 Vincenzo Librandi, <a href="/A027618/b027618.txt">Table of n, a(n) for n = 0..200</a>
%F A027618 c(n, n) where c(i, 0)=c(0, j)=1 and c(i+1, j+1)=1+c(i+1, j)+c(i, j+1)+c(i, j) (c(i, j) is A047671).
%F A027618 G.f.: (3/sqrt(1-6*x+x^2)-1/(1-x))/2.
%F A027618 Recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - _Vaclav Kotesovec_, Oct 08 2012
%F A027618 a(n) ~ 3*sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 08 2012
%t A027618 Table[SeriesCoefficient[(3/Sqrt[1-6*x+x^2]-1/(1-x))/2,{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%o A027618 (PARI) x='x+O('x^66); Vec((3/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ _Joerg Arndt_, May 04 2013
%Y A027618 Delannoy numbers A008288, A001850 are given by c'(i, j)=(3c(i, j)-1)/2.
%K A027618 nonn,easy,nice
%O A027618 0,2
%A A027618 Bruno Petazzoni (Bruno.Petazzoni(AT)ac-idf.jussieu.fr)