A027633 Molien series for full 8 X 8 Siegel modular group H_3 of order 371589120.
1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 31, 34, 53, 64, 89, 109, 152, 179, 245, 296, 384, 467, 601, 716, 911, 1090, 1351, 1614, 1986, 2342, 2856, 3364, 4037, 4742, 5653, 6578, 7791, 9036, 10592, 12243, 14268, 16380, 18990, 21724, 24999
Offset: 0
Examples
1 + x^4 + x^6 + 2*x^8 + 2*x^10 + 5*x^12 + 4*x^14 + 9*x^16 + 10*x^18 + 16*x^20 + ...
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..999
- B. Runge, On Siegel modular forms II, Nagoya Math. J., 138 (1995), 179-197.
- Index entries for Molien series
- Index entries for sequences related to modular groups
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 2, -1, -1, 1, -2, 0, 0, -2, 2, 0, -1, 3, -1, 1, 2, -3, 2, 0, -3, 3, -3, 0, 3, -4, 3, 0, -3, 3, -3, 0, 2, -3, 2, 1, -1, 3, -1, 0, 2, -2, 0, 0, -2, 1, -1, -1, 2, -1, 1, 0, 0, 1, -1).
Programs
-
Sage
R.
= PowerSeriesRing(ZZ,40); g = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56; f = g + x^112*g(1/x); h = f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30)); [h.list()[2*i] for i in range(20)] # Andy Huchala, Mar 02 2022
Formula
Reference gives explicit formula for Molien series.
Molien series is f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30)),
where f(x) = g(x) + x^112*g(1/x), g(x) = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56.