cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027633 Molien series for full 8 X 8 Siegel modular group H_3 of order 371589120.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 31, 34, 53, 64, 89, 109, 152, 179, 245, 296, 384, 467, 601, 716, 911, 1090, 1351, 1614, 1986, 2342, 2856, 3364, 4037, 4742, 5653, 6578, 7791, 9036, 10592, 12243, 14268, 16380, 18990, 21724, 24999
Offset: 0

Views

Author

Keywords

Examples

			1 + x^4 + x^6 + 2*x^8 + 2*x^10 + 5*x^12 + 4*x^14 + 9*x^16 + 10*x^18 + 16*x^20 + ...
		

Crossrefs

Cf. A027672, A027638. Bisection gives A039946.

Programs

  • Sage
    R. = PowerSeriesRing(ZZ,40);
    g = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56;
    f = g + x^112*g(1/x);
    h = f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30));
    [h.list()[2*i] for i in range(20)] # Andy Huchala, Mar 02 2022

Formula

Reference gives explicit formula for Molien series.
Molien series is f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30)),
where f(x) = g(x) + x^112*g(1/x), g(x) = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56.