cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027634 Poincaré (or Molien) series for ring of Siegel modular forms of genus 3 (associated with full modular group Gamma_3).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 4, 3, 7, 8, 11, 15, 22, 24, 37, 45, 58, 75, 99, 115, 156, 187, 232, 288, 356, 420, 527, 623, 750, 898, 1075, 1252, 1505, 1750, 2051, 2400, 2797, 3214, 3754, 4294, 4939, 5665, 6477, 7344, 8398, 9481, 10731, 12121, 13653
Offset: 0

Views

Author

Keywords

Examples

			1+x^4+x^6+x^8+2*x^10+4*x^12+3*x^14+7*x^16+8*x^18+11*x^20+...
		

Crossrefs

Cf. A027633.

Programs

  • Sage
    R. = PowerSeriesRing(ZZ,80);
    g = 1 + x^4 + x^10 + 3*x^16 - x^18 + 3*x^20 + 2*x^22 + 2*x^24 + 3*x^26 + 4*x^28 + 2*x^30 + 7*x^32 + 3*x^34 + 7*x^36 + 5*x^38 + 9*x^40 + 6*x^42 + 10*x^44 + 8*x^46 + 9*x^50 + 7*x^54 - x^2 + 12*x^52 + 10*x^48 + 7*x^56;
    f = g + x^112*g(1/x);
    h = (1-x^8)*f(x)*(1 + x^2)/((1 - x^4)*(1 - x^8)*(1 - x^12)^2*(1 - x^14)*(1 - x^18)*(1 - x^20)*(1 - x^30));
    [h.list()[2*i] for i in range(40)] # Andy Huchala, Mar 02 2022

Formula

(1-x^8) times Molien series in A027633. That is, same numerator, but denominator is (1-x^4)*(1-x^12)^2*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^30).