This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027644 #23 Aug 02 2022 20:28:03 %S A027644 1,4,36,24,450,40,2205,168,350,120,38115,88,40990950,10920,5005,24, %T A027644 130180050,136,1935088155,3192,177827650,1320,1539340803,184, %U A027644 304521767550,10920,37182145,24,2814316555050,1160 %N A027644 Denominators of poly-Bernoulli numbers B_n^(k) with k=2. %H A027644 Seiichi Manyama, <a href="/A027644/b027644.txt">Table of n, a(n) for n = 0..1000</a> %H A027644 K. Imatomi, M. Kaneko, E. Takeda, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Kaneko/kaneko2.html">Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values</a>, J. Int. Seq. 17 (2014) # 14.4.5 %H A027644 M. Kaneko, <a href="http://ftp.linux.cz/mount/muni.cz/EMIS/journals/JTNB/1997-1/kaneko.ps">Poly-Bernoulli numbers</a> %H A027644 Masanobu Kaneko, <a href="http://jtnb.cedram.org/item?id=JTNB_1997__9_1_221_0">Poly-Bernoulli numbers</a>, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. %H A027644 <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a> %F A027644 a(n) = denominator of Sum_{j=0..n} (-1)^(n+j) * j! * Stirling2(n, j) * (j+1)^(-k), for k = 2. %p A027644 a := n -> denom(add((-1)^(n-m)*m!*Stirling2(n, m)/(m+1)^2, m=0..n)): %p A027644 seq(a(n), n = 0..29); %t A027644 f[n_]:= (-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]; %t A027644 Table[Denominator[f[n]], {n, 0, 30}] (* _Robert G. Wilson v_, Oct 28 2004 *) %o A027644 (Magma) %o A027644 A027644:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >; %o A027644 [A027644(n,2): n in [0..30]]; // _G. C. Greubel_, Aug 02 2022 %o A027644 (SageMath) %o A027644 def A027644(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) ) %o A027644 [A027644(n,2) for n in (0..30)] # _G. C. Greubel_, Aug 02 2022 %Y A027644 Cf. A027643. %K A027644 nonn,frac %O A027644 0,2 %A A027644 _N. J. A. Sloane_