cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027672 Molien series for unitary 16-dimensional full Siegel modular group H_4 of order 48514675507200.

This page as a plain text file.
%I A027672 #28 Aug 08 2025 03:19:01
%S A027672 1,0,1,1,2,3,7,7,19,27,52,87,172,279,550,960,1782,3183,5845,10288,
%T A027672 18508,32284,56345,96473,164157,274194,454518,741321,1196924,1906123,
%U A027672 3003750,4673470,7198311,10959836,16523847,24654860,36447873,53369530,77478005,111498073
%N A027672 Molien series for unitary 16-dimensional full Siegel modular group H_4 of order 48514675507200.
%H A027672 Ray Chandler, <a href="/A027672/b027672.txt">Table of n, a(n) for n = 0..1000</a>
%H A027672 Ray Chandler, <a href="/A027672/a027672.txt">Mathematica program</a>
%H A027672 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A027672 M. Oura, <a href="http://projecteuclid.org/euclid.ojm/1200787332">The dimension formula for the ring of code polynomials in genus 4</a>, Osaka J. Math. 34 (1997), 53-72.
%H A027672 Bernhard Runge, <a href="http://projecteuclid.org/euclid.nmj/1118775400">On Siegel modular forms, part II</a>, Nagoya Math. J. 138, 179-197 (1995).
%H A027672 <a href="/index/Rec#order_168">Index entries for linear recurrences with constant coefficients</a>, order 168.
%H A027672 <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H A027672 <a href="/index/Gre#groups_modular">Index entries for sequences related to modular groups</a>
%F A027672 Oura gives an explicit formula for the Molien series.
%e A027672 1+x^8+x^12+2*x^16+3*x^20+7*x^24+7*x^28+19*x^32+27*x^36+O(x^40).
%t A027672 (* See link for Mathematica program. *)
%Y A027672 Cf. A027633, A027638, A051354.
%K A027672 nonn,nice,easy
%O A027672 0,5
%A A027672 _N. J. A. Sloane_