This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027699 #30 Jun 27 2022 21:18:26 %S A027699 3,5,17,23,29,43,53,71,83,89,101,113,139,149,163,197,257,263,269,277, %T A027699 281,293,311,317,337,347,349,353,359,373,383,389,401,449,461,467,479, %U A027699 503,509,523,547,571,593,599,619,643,673,683,691,739,751,773,797,811 %N A027699 Evil primes: primes with even number of 1's in their binary expansion. %C A027699 Comment from _Vladimir Shevelev_, Jun 01 2007: Conjecture: If pi_1(m) is the number of a(n) not exceeding m and pi_2(m) is the number of A027697(n) not exceeding m then pi_1(m) <= smaller than pi_2(m) for all natural m except m=5 and m=6. I verified this conjecture up to 10^9. Moreover I conjecture that pi_2(m)-pi_1(m) tends to infinity with records at the primes m=2, 13, 41, 61, 67, 79, 109, 131, 137, ... %H A027699 T. D. Noe, <a href="/A027699/b027699.txt">Table of n, a(n) for n = 1..10000</a> %H A027699 E. Fouvry, C. Mauduit, <a href="http://dx.doi.org/10.1007/BF01444238">Sommes des chiffres et nombres presque premiers</a>, (French) [Sums of digits and almost primes] Math. Ann. 305 (1996), no. 3, 571--599. MR1397437 (97k:11029). %H A027699 V. Shevelev, <a href="https://arxiv.org/abs/0706.0786">A conjecture on primes and a step towards justification</a>, arXiv:0706.0786 [math.NT], 2007. %t A027699 Select[Prime[Range[200]], EvenQ[Count[IntegerDigits[ #,2],1]]&] (* _T. D. Noe_, Jun 12 2007 *) %o A027699 (PARI) forprime(p=1,999,norml2(binary(p))%2 || print1(p",")) %o A027699 (PARI) isA027699(p)=isprime(p) && !bittest(norml2(binary(p)),0) \\ _M. F. Hasler_, Dec 12 2010 %o A027699 (Python) %o A027699 from sympy import isprime %o A027699 def ok(n): return bin(n).count("1")%2 == 0 and isprime(n) %o A027699 print([k for k in range(812) if ok(k)]) # _Michael S. Branicky_, Jun 27 2022 %Y A027699 Cf. A027697, A066148, A066149. %Y A027699 Cf. A001969 (evil numbers), A129771 (evil odd numbers) %Y A027699 Cf. A130911 (prime race between evil primes and odious primes). %K A027699 nonn,easy,base %O A027699 1,1 %A A027699 _N. J. A. Sloane_ %E A027699 More terms from _Erich Friedman_