This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027723 #20 Aug 11 2024 14:41:29 %S A027723 7,9,313,999,31513,75357,78687,90909,98289,3159513,7642467,9009009, %T A027723 743080347,900090009,31413131413,90000900009,97474147479, %U A027723 3105075705013,9000009000009,757082131280757,900000090000009,907340818043709,90000000900000009,92269201110296229 %N A027723 Palindromes of form k^2 + k + 7. %C A027723 From _Robert Israel_, May 16 2018: (Start) %C A027723 Palindromes m such that 4*m - 27 is a square. %C A027723 Each term has an odd number of digits and ends in 3, 7 or 9. %C A027723 Contains 9*(1+10^k+10^(2*k)) for each k>=1. (End) %H A027723 Giovanni Resta, <a href="/A027723/b027723.txt">Table of n, a(n) for n = 1..45</a> %H A027723 P. De Geest, <a href="https://www.worldofnumbers.com/quasimor.htm">Palindromic Quasi_Over_Squares of the form n^2+(n+X)</a> %p A027723 R[1]:= [1,3,5,7,9]: X[1]:= R[1]: %p A027723 for k from 2 to 6 do %p A027723 R[k]:= map(t -> seq(10^(k-1)*j+t,j=0..9),R[k-1]); %p A027723 X[k]:= map(t -> seq(j+10*t,j=0..9),X[k-1]) %p A027723 od: %p A027723 Res:= 7,9: %p A027723 for k from 1 to 6 do %p A027723 for j from 1 to 5*10^(k-1) do %p A027723 r:= 10^(k+1)*X[k][j]+R[k][j]; %p A027723 for y from 0 to 9 do %p A027723 if issqr(4*(r+10^k*y)-27) then %p A027723 x:= r+10^k*y; %p A027723 Res:= Res,x; %p A027723 fi %p A027723 od od od: %p A027723 Res; # _Robert Israel_, May 16 2018 %Y A027723 Cf. A027722, A027692, A027756, A005471, A027721, A027725. %K A027723 nonn,base %O A027723 1,1 %A A027723 _Patrick De Geest_ %E A027723 More terms from _Giovanni Resta_, Aug 28 2018