This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027751 #42 Jul 08 2025 17:55:04 %S A027751 1,1,1,1,2,1,1,2,3,1,1,2,4,1,3,1,2,5,1,1,2,3,4,6,1,1,2,7,1,3,5,1,2,4, %T A027751 8,1,1,2,3,6,9,1,1,2,4,5,10,1,3,7,1,2,11,1,1,2,3,4,6,8,12,1,5,1,2,13, %U A027751 1,3,9,1,2,4,7,14,1,1,2,3,5,6,10,15,1,1,2,4,8,16,1,3,11,1,2,17,1,5,7,1,2,3,4,6,9,12,18 %N A027751 Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention. %C A027751 Or, take the list 1,2,3,4,... of natural numbers (A000027) and replace each number by its proper divisors. %C A027751 The row length is 1 for n = 1 and A032741(n) for n >= 2. - _Wolfdieter Lang_, Jan 16 2016 %H A027751 Alois P. Heinz, <a href="/A027751/b027751.txt">Rows n = 1..1540, flattened</a> %e A027751 The irregular triangle T(n,k) begins: %e A027751 n\k 1 2 3 4 5 ... %e A027751 1: 1 (by convention) %e A027751 2: 1 %e A027751 3: 1 %e A027751 4: 1 2 %e A027751 5: 1 %e A027751 6: 1 2 3 %e A027751 7: 1 %e A027751 8: 1 2 4 %e A027751 9: 1 3 %e A027751 10: 1 2 5 %e A027751 11: 1 %e A027751 12: 1 2 3 4 6 %e A027751 13: 1 %e A027751 14: 1 2 7 %e A027751 15: 1 3 5 %e A027751 16: 1 2 4 8 %e A027751 17: 1 %e A027751 18: 1 2 3 6 9 %e A027751 19: 1 %e A027751 20: 1 2 4 5 10 %e A027751 .... reformatted - _Wolfdieter Lang_, Jan 16 2016 %p A027751 with(numtheory): %p A027751 T:= n-> sort([(divisors(n) minus {n})[]])[]: T(1):=1: %p A027751 seq(T(n), n=1..50); # _Alois P. Heinz_, Apr 11 2012 %t A027751 Table[ Divisors[n] // Most, {n, 1, 36}] // Flatten // Prepend[#, 1] & (* _Jean-François Alcover_, Jun 10 2013 *) %o A027751 (Haskell) %o A027751 a027751 n k = a027751_tabf !! (n-1) !! (k-1) %o A027751 a027751_row n = a027751_tabf !! (n-1) %o A027751 a027751_tabf = [1] : map init (tail a027750_tabf) %o A027751 -- _Reinhard Zumkeller_, Apr 18 2012 %o A027751 (Python) %o A027751 from sympy import divisors %o A027751 def a(n): return [1] if n==1 else divisors(n)[:-1] %o A027751 for n in range(21): print(a(n)) # _Indranil Ghosh_, Apr 30 2017 %o A027751 (PARI) row(n) = if (n==1, [1], my(d = divisors(n)); vector(#d-1,k, d[k])); \\ _Michel Marcus_, Apr 30 2017 %Y A027751 Cf. A027750, A032741 (row lengths), A001065, A000005. %Y A027751 Row sums give A173455. - _Omar E. Pol_, Nov 23 2010 %K A027751 nonn,easy,tabf %O A027751 1,5 %A A027751 _N. J. A. Sloane_ %E A027751 More terms from _Patrick De Geest_, May 15 1998 %E A027751 Example edited by _Omar E. Pol_, Nov 23 2010