cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027833 Distances between successive 2's in sequence A001223 of differences between consecutive primes.

This page as a plain text file.
%I A027833 #38 Jan 20 2025 05:54:25
%S A027833 1,2,2,3,3,4,3,6,2,5,2,6,2,2,4,3,5,3,4,5,12,2,6,9,6,5,4,3,4,20,2,2,4,
%T A027833 4,19,2,3,2,4,8,11,5,3,3,3,10,5,4,2,17,3,6,3,3,9,9,2,6,2,6,5,6,2,3,2,
%U A027833 3,9,4,7,3,7,20,4,7,6,5,3,7,3,20,2,14,4,10,2,3,6,4,2,2,7,2,6,3
%N A027833 Distances between successive 2's in sequence A001223 of differences between consecutive primes.
%C A027833 a(n) = number of primes p such that A014574(n) < p < A014574(n+1). - _Thomas Ordowski_, Jul 20 2012
%C A027833 Conjecture: a(n) < log(A014574(n))^2. - _Thomas Ordowski_, Jul 21 2012
%C A027833 Conjecture: All positive integers are represented in this sequence. This is verified up to 184, by searching up to prime indexes of ~128000000. The rate of filling-in the smallest remaining gap among the integers, and the growth in the maximum value found, both slow down considerably relative to a fixed quantity of twin prime incidences examined in each pass. The maximum value found was 237. - _Richard R. Forberg_, Jul 28 2016
%C A027833 All positive integers below 312 are in this sequence. - _Charles R Greathouse IV_, Aug 01 2016
%C A027833 From _Gus Wiseman_, Jun 11 2024: (Start)
%C A027833 Also the length of the n-th maximal antirun of prime numbers > 3, where an antirun is an interval of positions at which consecutive terms differ by more than 2. These begin:
%C A027833    5
%C A027833    7  11
%C A027833   13  17
%C A027833   19  23  29
%C A027833   31  37  41
%C A027833   43  47  53  59
%C A027833   61  67  71
%C A027833   73  79  83  89  97 101
%C A027833 (End)
%H A027833 Harvey P. Dale, <a href="/A027833/b027833.txt">Table of n, a(n) for n = 1..1000</a>
%H A027833 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>.
%p A027833 A027833 := proc(n)
%p A027833     local plow,phigh ;
%p A027833     phigh := A001359(n+1) ;
%p A027833     plow := A001359(n) ;
%p A027833     numtheory[pi](phigh)-numtheory[pi](plow) ;
%p A027833 end proc:
%p A027833 seq(A027833(n),n=1..100) ; # _R. J. Mathar_, Jan 20 2025
%t A027833 Differences[Flatten[Position[Differences[Prime[Range[500]]],2]]] (* _Harvey P. Dale_, Nov 17 2018 *)
%t A027833 Length/@Split[Select[Range[4,10000],PrimeQ[#]&],#1+2!=#2&]//Most (* _Gus Wiseman_, Jun 11 2024 *)
%o A027833 (Sage)
%o A027833 def A027833(n) :
%o A027833    a = [ ]
%o A027833    st = 2
%o A027833    for i in (3..n) :
%o A027833       if (nth_prime(i+1)-nth_prime(i) == 2) :
%o A027833          a.append(i-st)
%o A027833          st = i
%o A027833    return(a)
%o A027833 A027833(496) # _Jani Melik_, May 15 2014
%o A027833 (PARI) n=1; p=5; forprime(q=7,1e3, if(q-p==2, print1(n", "); n=1, n++); p=q) \\ _Charles R Greathouse IV_, Aug 01 2016
%Y A027833 First differences of A029707 and A155752 = A029707 - 1. _M. F. Hasler_, Jul 24 2012
%Y A027833 Positions of first appearances are A373401, sorted A373402.
%Y A027833 Functional neighbors: A001359, A006512, A251092 or A175632, A373127 (firsts A373128, sorted A373200), A373403, A373405, A373409.
%Y A027833 A000040 lists the primes, differences A001223.
%Y A027833 A002808 lists the composite numbers, differences A073783.
%Y A027833 A046933 counts composite numbers between primes.
%Y A027833 A065855 counts composite numbers up to n.
%Y A027833 Cf. A025157, A038664, A071148,  A176246, A350842, A373406.
%K A027833 nonn
%O A027833 1,2
%A A027833 Jean-Marc MALASOMA (Malasoma(AT)entpe.fr)